Bacillus coagulans: a viable adjunct therapy for relieving symptoms of rheumatoid arthritis according to a randomized, controlled trial.

David R Mandel MD Inc, Mayfield Village, OH 44143, USA.
BMC Complementary and Alternative Medicine (Impact Factor: 1.88). 01/2010; 10:1. DOI: 10.1186/1472-6882-10-1
Source: PubMed

ABSTRACT Lactic acid-producing bacteria (LAB) probiotics demonstrate immunomodulating and anti-inflammatory effects and the ability to lessen the symptoms of arthritis in both animals and humans. This randomized, double-blind, placebo-controlled, parallel-design, clinical pilot trial was conducted to evaluate the effects of the LAB probiotic preparation, Bacillus coagulans GBI-30, 6086, on symptoms and measures of functional capacity in patients with rheumatoid arthritis (RA) in combination with pharmacological anti-arthritic medications.
Forty-five adult men and women with symptoms of RA were randomly assigned to receive Bacillus coagulans GBI-30, 6086 or placebo once a day in a double-blind fashion for 60 days in addition to their standard anti-arthritic medications. Arthritis activity was evaluated by clinical examination, the American College of Rheumatology (ACR) criteria, the Stanford Health Assessment Questionnaire Disability Index (HAQ-DI), and laboratory tests for erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP).
Subjects who received Bacillus coagulans GBI-30, 6086 experienced borderline statistically significant improvement in the Patient Pain Assessment score (P = .052) and statistically significant improvement in Pain Scale (P = .046) vs placebo. Compared with placebo, Bacillus coagulans GBI-30, 6086 treatment resulted in greater improvement in patient global assessment and self-assessed disability; reduction in CRP; as well as the ability to walk 2 miles, reach, and participate in daily activities. There were no treatment-related adverse events reported throughout this study.
Results of this pilot study suggest that adjunctive treatment with Bacillus coagulans GBI-30, 6086 LAB probiotic appeared to be a safe and effective for patients suffering from RA. Because of the low study population size, larger trials are needed to verify these results.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to systematically evaluate safety of probiotics and synbiotics in immune compromised adults (≥18 years). Safety was analysed using the Common Terminology Clinical Adverse Events (CTCAE version 4.0) classification, thereby providing an update on previous reports using the most recent available clinical data (2008- 2013). Safety aspects are represented and related to number of participants per probiotic strain/culture, study duration, dosage, clinical condition and selected afflictions. Analysis of 57 clinical studies indicates that probiotic and/or synbiotic administration in immune compromised adults is safe with regard to the current evaluated probiotic strains, dosages and duration. Individuals were considered immune compromised if HIV-infected, critically ill, underwent surgery or had an organ- or an autoimmune disease. There were no major safety concerns in the study, as none of the serious adverse events (AE)s were related, or suspected to be related, to the probiotic or synbiotic product and the study products were well tolerated. Overall, AEs occurred less frequent in immune compromised subjects receiving probiotics and/or synbiotics compared to the control group. In addition, the results demonstrated a flaw in precise reporting and classification of AE in most studies. Furthermore, generalisability of conclusions are greatly limited by the inconsistent, imprecise and potentially incomplete reporting as well as the variation in probiotic strains, dosages, administration regimes, study populations and reported outcomes. We argue that standardised reporting on adverse events (CTCAE) in 'food' studies should be obligatory, thereby improving reliability of data and re-enforcing the safety profile of probiotics.
    Beneficial Microbes 10/2014; 6(1):1-15. DOI:10.3920/BM2014.0079 · 1.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial antimicrobial resistance in both the medical and agricultural fields has become a serious problem worldwide. During the last 15 years, our laboratories have worked toward the identification of probiotic candidates for poultry which can actually displace Salmonella and other enteric pathogens which have colonized the gastrointestinal tract of chickens and turkeys, indicating that selection of therapeutically efficacious probiotic cultures with marked performance benefits in poultry is possible, and that defined cultures can sometimes provide an attractive alternative to conventional antimicrobial therapy. Our studies have been focused on specific pathogen reduction, performance under commercial conditions, and effects on both idiopathic and defined enteritis. We have also confirmed that selected heat-resistant spore-forming Bacillus species can markedly reduce Salmonella and Clostridium when administered in very high numbers, and we have developed a novel and simple technique for obtaining cultured Bacillus spore counts, providing a cost-effective feed-stable inclusion in commercial poultry diets. In order to select even more effective isolates, we are still currently focused on the mechanistic action of the Lactobacillus probiotic previously developed as well as new Bacillus candidates. Current indications are that mechanism of action involves rapid activation of innate host immune responses, providing an exciting possibility for identification of vastly superior and more potent probiotics. In this review, we summarize the safety and efficacy of individual monocultures for prophylactic and/or therapeutic efficacy against Salmonella infections under both laboratory and field conditions as well as the development of a novel, cost-effective, feed-stable direct-fed microbials (DFM) with potential for widespread utilization and improved production, delivery and clinical efficacy for animal use.
    Food Research International 03/2012; 45(2):628-633. DOI:10.1016/j.foodres.2011.03.047 · 3.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial spore formers are being used as probiotic supplements for use in animal feeds, for human dietary supplements as well as in registered medicines. Their heat stability and ability to survive the gastric barrier makes them attractive as food additives and this use is now being taken forward. While often considered soil organisms this conception is misplaced and Bacilli should be considered as gut commensals. This review summarises the current use of Bacillus species as probiotics, their safety, mode of action as well as their commercial applications.
    Food Microbiology 04/2011; 28(2):214-20. DOI:10.1016/ · 3.37 Impact Factor

Preview (2 Sources)

Available from