Article

Cholesteryl Ester Transfer Protein and Mortality in Patients Undergoing Coronary Angiography The Ludwigshafen Risk and Cardiovascular Health Study

Department of Internal Medicine I, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria.
Circulation (Impact Factor: 14.95). 01/2010; 121(3):366-74. DOI: 10.1161/CIRCULATIONAHA.109.875013
Source: PubMed

ABSTRACT The role of cholesteryl ester transfer protein (CETP) in the development of atherosclerosis is still open to debate. In the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial, inhibition of CETP in patients with high cardiovascular risk was associated with increased high-density lipoprotein levels but increased risk of cardiovascular morbidity and mortality. In this report, we present a prospective observational study of patients referred to coronary angiography in which CETP was examined in relation to morbidity and mortality.
CETP concentration was determined in 3256 participants of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study who were referred to coronary angiography at baseline between 1997 and 2000. Median follow-up time was 7.75 years. Primary and secondary end points were cardiovascular and all-cause mortality, respectively. CETP levels were higher in women and lower in smokers, in diabetic patients, and in patients with unstable coronary artery disease, respectively. In addition, CETP levels were correlated negatively with high-sensitivity C-reactive protein and interleukin-6. After adjustment for age, sex, medication, coronary artery disease status, cardiovascular risk factors, and diabetes mellitus, the hazard ratio for death in the lowest CETP quartile was 1.33 (1.07 to 1.65; P=0.011) compared with patients in the highest CETP quartile. Corresponding hazard ratios for death in the second and third CETP quartiles were 1.17 (0.92 to 1.48; P=0.19) and 1.10 (0.86 to 1.39; P=0.46), respectively.
We interpret our data to suggest that low endogenous CETP plasma levels per se are associated with increased cardiovascular and all-cause mortality, challenging the rationale of pharmacological CETP inhibition.

Full-text

Available from: Ivan Tancevski, May 30, 2015
0 Followers
 · 
164 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Identification of the CETP, LIPG (encoding endothelial lipase) and APOC3 genes, and ana lysis of rare genetic variants in them, have allowed researchers to increase understanding of HDL metabolism significantly. However, development of cardiovascular risk-reducing therapeutics targeting the proteins encoded by these genes has been less straightforward. The failure of two CETP inhibitors is complex but illustrates a possible over-reliance on HDL cholesterol as a marker of therapeutic efficacy. The case of endothelial lipase exemplifies the importance of utilizing population-wide genetic studies of rare variants in potential therapeutic targets to gain information on cardiovascular disease end points. Similar population-wide studies of cardiovascular end points make apoC-III a potentially attractive target for lipid-related drug discovery. These three cases illustrate the positives and negatives of single-gene studies relating to HDL-related cardiovascular drug discovery; such studies should focus not only on HDL cholesterol and other components of the lipid profile, but also on the effect genetic variants have on cardiovascular end points.
    Clinical Lipidology 12/2013; 8(6):635-648. DOI:10.2217/clp.13.73 · 0.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhibition of cholesteryl ester transfer protein (CETP) lowers plasma low-density lipoprotein cholesterol concentration and raises high-density lipoprotein (HDL) cholesterol, suggesting it might prevent cardiovascular disease (CVD). From the outset, however, the concept has been controversial owing to uncertainty about its effects on HDL function and reverse cholesterol transport (RCT). Although there has long been good evidence that CETP inhibition reduces atherosclerosis in rabbits, the first information on CETP as a CVD risk factor in a prospectively followed cohort was not published until after the first Phase 3 trial of a CETP inhibitor had begun. The worrying finding that CVD incidence was related inversely to plasma CETP has since been reproduced in each of five further prospective cohort studies. Similar results were obtained in subjects on or off statin therapy, for first and second CVD events, and for mortality as well as CVD morbidity. Additionally, two recent studies have found alleles of the CETP gene that lower hepatic CETP secretion to be associated with an increased risk of myocardial infarction. Meanwhile, CETP gene transfer in mice was found to increase RCT from peripheral macrophages in vivo, and human plasma with high CETP activity was shown to have a greater capacity to remove cholesterol from cultured cells than plasma with low activity. This mounting evidence for a protective function of CETP has been given remarkably little attention, and indeed was not mentioned in several recent reviews. It appears to show that CETP inhibition does not test the HDL hypothesis as originally hoped, and raises a pressing ethical issue regarding two Phase 3 trials of inhibitors, involving more than forty thousand subjects, which are currently in progress. As the weight of evidence now clearly supports an adverse effect of CETP inhibition on CVD, an urgent review is needed to determine if these trials should be discontinued.
    06/2014; 3:124. DOI:10.12688/f1000research.4396.1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plasma cholesteryl ester transfer (CET), reflecting transfer of cholesteryl esters from high density lipoproteins (HDL) towards apolipoprotein B-containing lipoproteins, may promote atherosclerosis development, and is elevated in Type 2 diabetes mellitus (T2DM). We determined the extent to which the relationship of plasma CET with very low density lipoprotein (VLDL) and low density lipoprotein (LDL) subfractions is modified in T2DM.
    European Journal of Clinical Investigation 11/2014; 45(1). DOI:10.1111/eci.12377 · 2.83 Impact Factor