Article

Population structure of Glossina palpalis gambiensis (Diptera: Glossinidae) between river basins in Burkina Faso: consequences for area-wide integrated pest management.

Cirad, UMR Contrôle des maladies animales exotiques et émergentes, Campus International de Baillarguet, F34398 Montpellier, France. <>
Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases (Impact Factor: 3.26). 03/2010; 10(2):321-8. DOI: 10.1016/j.meegid.2009.12.009
Source: PubMed

ABSTRACT African animal trypanosomosis is a major obstacle to the development of more efficient and sustainable livestock production systems in West Africa. Riverine tsetse species such as Glossina palpalis gambiensis Vanderplank are their major vectors. A wide variety of control tactics is available to manage these vectors, but their elimination will only be sustainable if control is exercised following area-wide integrated pest management (AW-IPM) principles, i.e. the control effort is targeting an entire tsetse population within a circumscribed area. In the present study, genetic variation at microsatellite DNA loci was used to examine the population structure of G. p. gambiensis inhabiting two adjacent river basins, i.e. the Comoé and the Mouhoun River basins in Burkina Faso. A remote sensing analysis revealed that the woodland savannah habitats between the river basins have remained unchanged during the last two decades. In addition, genetic variation was studied in two populations that were separated by a man-made lake originating from a dam built in 1991 on the Comoé. Low genetic differentiation was observed between the samples from the Mouhoun and the Comoé River basins and no differentiation was found between the samples separated by the dam. The data presented indicate that the overall genetic differentiation of G. p. gambiensis populations inhabiting two adjacent river basins in Burkina Faso is low (F(ST)=0.016). The results of this study suggest that either G. p. gambiensis populations from the Mouhoun are not isolated from those of the Comoé, or that the isolation is too recent to be detected. If elimination of the G. p. gambiensis population from the Mouhoun River basin is the selected control strategy, re-invasion from adjacent river basins may need to be prevented by establishing a buffer zone between the Mouhoun and the other river basin(s).

0 Followers
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of environmental factors in driving adaptive trajectories of living organisms is still being debated. This is even more important to understand when dealing with important neglected diseases and their vectors. In this paper, we analysed genetic divergence, computed from seven microsatellite loci, of 614 tsetse flies (Glossina palpalis gambiensis and Glossina palpalis palpalis, major vectors of animal and human trypanosomes) from 28 sites of West and Central Africa. We found that the two subspecies are so divergent that they deserve the species status. Controlling for geographic and time distances that separate these samples, which have a significant effect, we found that G. p. gambiensis from different landscapes (Niayes of Senegal, savannah and coastal environments) were significantly genetically different and thus represent different ecotypes or subspecies. We also confirm that G. p. palpalis from Ivory Coast, Cameroon and DRC are strongly divergent. These results provide an opportunity to examine whether new tsetse fly ecotypes might display different behaviour, dispersal patterns, host preferences and vectorial capacities. This work also urges a revision of taxonomic status of Glossina palpalis subspecies and highlights again how fast ecological divergence can be, especially in host-parasite-vector systems.
    PLoS Neglected Tropical Diseases 03/2015; 9(3):e0003497. DOI:10.1371/journal.pntd.0003497 · 4.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glossina palpalis palpalis (Diptera: Glossinidae) is widespread in west Africa, and is the main vector of sleeping sickness in Cameroon as well as in the Bas Congo Province of the Democratic Republic of Congo. However, little is known on the structure of its populations. We investigated G. p. palpalis population genetic structure in five sleeping sickness foci (four in Cameroon, one in Democratic Republic of Congo) using eight microsatellite DNA markers. A strong isolation by distance explains most of the population structure observed in our sampling sites of Cameroon and DRC. The populations here are composed of panmictic subpopulations occupying fairly wide zones with a very strong isolation by distance. Effective population sizes are probably between 20 and 300 individuals and if we assume densities between 120 and 2000 individuals per km2, dispersal distance between reproducing adults and their parents extends between 60 and 300 meters. This first investigation of population genetic structure of G. p. palpalis in Central Africa has evidenced random mating subpopulations over fairly large areas and is thus at variance with that found in West African populations of G. p. palpalis. This study brings new information on the isolation by distance at a macrogeographic scale which in turn brings useful information on how to organise regional tsetse control. Future investigations should be directed at temporal sampling to have more accurate measures of demographic parameters in order to help vector control decision.
    Parasites & Vectors 07/2011; 4:140. DOI:10.1186/1756-3305-4-140 · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tsetse flies are the cyclical vectors of African animal trypanosomosis (AAT) and human African trypanosomosis (HAT). In March 2010, the Government of Ghana initiated a large scale integrated tsetse eradication campaign in the Upper West Region (UWR) (≈18,000 km2) under the umbrella of the Pan-African Tsetse and Trypanosomosis Eradication Campaign (PATTEC). We investigated the structuring of Glossina tachinoides populations within and between the three main river basins of the target area in the UWR. Out of a total sample of 884 flies, a sub-sample of 266 was genotyped at nine microsatellite loci. The significance of the different hierarchical levels was tested using Yang’s parameters estimated with Weir and Cockerham’s method. A significant effect of traps within groups (pooling traps no more than 3 km distant from each other), of groups within river basins and of river basins within the whole target area was observed. Isolation by distance between traps was highly significant. A local density of 0.48-0.61 flies/m2 was estimated and a dispersal distance that approximated 11 m per generation [CI 9, 17]. No significant sex-biased dispersal was detected. Dispersal distances of G. tachinoides in the UWR were relatively low, possibly as a result of the fragmentation of the habitat and the seasonality of the Kulpawn and Sissili rivers. Moreover, very high fly population densities were observed in the sample sites, which potentially reduces dispersal at constant habitat saturation, because the probability that migrants can established is reduced (density dependent dispersal). However, the observed spatial dispersal was deemed sufficient for a G. tachinoides-cleared area to be reinvaded from neighboring populations in adjacent river basins. These data corroborate results from other population genetics studies in West Africa, which indicate that G. tachinoides populations from different river basins cannot be considered isolated.