Lactation performance and amino acid utilization of cows fed increasing amounts of reduced-fat dried distillers grains with solubles.

Dairy Science Department, South Dakota State University, Brookings 57007, USA.
Journal of Dairy Science (Impact Factor: 2.55). 01/2010; 93(1):288-303. DOI: 10.3168/jds.2009-2377
Source: PubMed

ABSTRACT The use of a solvent-extraction process that removes corn oil from distillers grains produces a reduced-fat co-product (RFDG). To determine the optimal concentration of RFDG in mid-lactation diets, 22 multiparous and 19 primiparous Holstein cows were used in a completely randomized design for 8 wk, including a 2-wk covariate period. The RFDG was included at 0, 10, 20, and 30% of the diet on a dry matter basis, replacing soybean feedstuffs. Increasing RFDG in diets had no effect on dry matter intake (23.1 kg/d) or milk production (35.0 kg/d). Milk fat percentage increased linearly from 3.18 to 3.72% as RFDG increased from 0 to 30% of the diet. Similarly, milk fat yield tended to increase linearly from 1.08 to 1.32 kg/d. Milk protein percentage (2.99, 3.06, 3.13, and 2.99% for diets with RFDG from 0 to 30%) responded quadratically, whereas protein yield was not affected by treatment. Milk urea N decreased linearly from 15.8 to 13.1mg/dL. The efficiency of N utilization for milk production was not affected by including RFDG (26.1%), whereas the efficiency of milk production (energy-corrected milk divided by dry matter intake) tended to increase linearly with increasing RFDG in the diet. Similarly, concentrations of plasma glucose increased linearly. Arterial Lys decreased linearly from 66.0 to 44.8 microM/L, whereas arterial Met increased linearly from 16.5 to 29.3 microM/L. Arteriovenous difference of Lys decreased linearly from 42.6 to 32.5 microM/L, whereas that of Met was unaffected. The extraction of Lys by the mammary gland increased linearly from 64.3 to 72.2%, whereas that of Met decreased linearly from 71.6 to 42.7%. Feeding up to 30% of RFDG in a mid-lactation diet supported lactation performance similarly to cows fed the soybean protein-based diet (0% RFDG).

  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to evaluate the effects of feeding different amounts of low-fat distillers dried grains with solubles (DDGS) in diets with or without supplementation of rumen-protected Lys (RPL) on lactation responses and AA utilization. Eight multiparous Holstein cows averaging 188 ± 13 DIM were assigned to a replicated 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments. Dietary treatments were as follows: (1) 15% low-fat DDGS, (2) 15% low-fat DDGS plus RPL, (3) 30% low-fat DDGS, and (4) 30% low-fat DDGS plus RPL. Periods lasted 21 d, with the last 3 d for data collection. Basal diets (without RPL) were formulated using the Cornell-Penn-Miner Dairy model [Cornell University (Ithaca, NY), University of Pennsylvania (Philadelphia), and the W. H. Miner Agricultural Research Institute (Chazy, NY)] to be isonitrogenous (16.9% crude protein) and isocaloric (2.63 Mcal/kg) and inclusion of low-fat DDGS increased at the expense of corn and soybean meal. Inclusion rate of low-fat DDGS and RPL supplementation had no effect on dry matter intake and milk yield, averaging 25.3 ± 0.97 kg/d and 26.9 ± 1.94 kg/d, respectively (means ± standard error of the means). Milk fat and lactose concentrations were unaffected by treatments but milk protein concentration decreased in cows fed treatments with 30% low-fat DDGS compared with those fed treatments with 15% low-fat DDGS (3.49 vs. 3.40 ± 0.12%). Updated predictions from the Cornell-Penn-Miner Dairy model showed a decrease of 25 g of metabolizable protein Lys in cows fed treatments with 30% low-fat DDGS. Compared with cows fed treatments with 15% low-fat DDGS, cows fed treatments with 30% low-fat DDGS had a marked increase in extraction efficiency (49.4 vs. 61.4 ± 2.51%) and a tendency to increase milk protein concentration (3.41 vs. 3.48 ± 0.12%) with RPL supplementation, which supported that Lys supply was inadequate. Despite differences observed in milk protein concentration, milk protein yield was similar across treatments and averaged 0.92 ± 0.06 kg/d. Lack of response on arterial Lys concentration with RPL supplementation leads us to suspect that the RPL product delivered a lower amount of metabolizable Lys than expected. Based on extraction efficiencies, Lys, Arg, and Phe were the first 3 limiting AA across treatments. Supplementation of rumen-protected AA has the potential to be an effective nutritional strategy to supply limiting AA; however, accurate information on the bioavailability of the AA is needed.
    Journal of Dairy Science 10/2014; · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed, economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). Although 40.5 % of corn grain was channeled to ethanol processing in 2011, only 25 % of US corn acreage was attributable to ethanol. By 2026, land area attributed to corn ethanol production is reduced to 11 % to 19 % depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains with solubles substitutes at a higher rate for soybean meal, oil replacement requirements intensify and positively feedback to elevate estimates of land usage. Accounting for anticipated technological changes in the corn ethanol system is important for understanding the associated land base ascribed, and may aid in calibrating parameters for land use models in biofuel life-cycle analyses.
    Biotechnology for Biofuels 04/2014; 7(1):61. · 6.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous research has shown that feeding high fat corn distiller’ grains plus solubles (CDDGS; ∼10% fat, dry matter [DM]) reduces enteric methane (CH4) emission from beef cattle. However, feeding CDDGS (∼30% crude protein [CP] DM) or wheat distillers’ grains plus solubles (WDDGS; ∼40% CP, DM) increases N excretion from beef cattle and the resulting increase in nitrous oxide (N2O) from manure may offset any CH4 mediated decrease in greenhouse gas emissions (GHG). The objective of this study was to evaluate the impact of CDDGS and WDDGS inclusion on GHG emissions from beef cattle using a life cycle assessment (LCA). The LCA was conducted using primary data for diet composition, CH4 emission and N excretion generated in two studies using growing and finishing beef cattle. A representative model farm was simulated using the Holos GHG model (, which included 40% DM CDDGS or WDDGS in growing and finishing feedlot diets. The simulation was made relative to the standard practice of using barley grain as the main supplemental energy source in western Canadian beef cattle diets (baseline scenario). Feeding CDDGS (14.98 kg CO2 equivalent [CO2e]/kg live weight) and WDDGS (15.41 kg CO2e/kg live weight) resulted in 6.2 and 9.3% higher GHG intensity compared to the baseline scenario (14.10 kg CO2e/kg live weight). Using high-fat distillers’ grains in the diet of feedlot cattle may decrease enteric CH4 emissions, but at high dietary levels it increases N excretion and results in a net increase in GHG emissions. To reduce environmental impact, dried distillers’ grains should not be included in the diet of feedlot cattle at a level that exceeds N requirements. Manure arising from cattle fed DDGS should be land applied at a level that matches the N requirements of the crop.
    Agricultural Systems 05/2014; · 2.50 Impact Factor

Full-text (2 Sources)

Available from
Aug 15, 2014