Two Rubisco activase isoforms may play different roles in photosynthetic heat acclimation in the rice plant.

State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
Physiologia Plantarum (Impact Factor: 3.26). 05/2010; 139(1):55-67. DOI: 10.1111/j.1399-3054.2009.01344.x
Source: PubMed

ABSTRACT Studies on some plant species have shown that increasing the growth temperature gradually or pretreating with high temperature can lead to obvious photosynthetic acclimation to high temperature. To test whether this acclimation arises from heat adaptation of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC activation mediated by Rubisco activase (RCA), gene expression of RCA large isoform (RCA(L)) and RCA small isoform (RCA(S)) in rice was determined using a 4-day heat stress treatment [40/30 degrees C (day/night)] followed by a 3-day recovery under control conditions [30/22 degrees C (day/night)]. The heat stress significantly induced the expression of RCA(L) as determined by both mRNA and protein levels. Correlative analysis indicated that RCA(S) protein content was extremely significantly related to Rubisco initial activity and net photosynthetic rate (Pn) under both heat stress and normal conditions. Immunoblot analysis of the Rubisco-RCA complex revealed that the ratio of RCA(L) to Rubisco increased markedly in heat-acclimated rice leaves. Furthermore, transgenic rice plants expressing enhanced amounts of RCA(L) exhibited higher thermotolerance in Pn and Rubisco initial activity and grew better at high temperature than wild-type (WT) plants and transgenic rice plants expressing enhanced amounts of RCA(S). Under normal conditions, the transgenic rice plants expressing enhanced amounts of RCA(S) showed higher Pn and produced more biomass than transgenic rice plants expressing enhanced amounts of RCA(L) and wild-type plants. Together, these suggest that the heat-induced RCA(L) may play an important role in photosynthetic acclimation to moderate heat stress in vivo, while RCA(S) plays a major role in maintaining Rubisco initial activity under normal conditions.

  • Photosynthetica 09/2014; 52(3):475-478. · 1.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study was designed to examine the effects of heat acclimation on enzymatic activity, transcription levels, the photosynthesis processes associated with thermostability in orchardgrass (Dactylis glomerata L.).The stomatal conductance (Gs), net photosynthetic rate (Pn), and transpiration rates (Tr) of both heat-acclimated (HA) and non-acclimated (NA) plants were drastically reduced during heat treatment [using a 5-day heat stress treatment (38/30 °C ‒ day/night) followed by a 3-day recovery under control conditions (25/20 °C ‒ day/night), in order to consolidate the second cycle was permitted]. Water use efficiency increased more steeply in the HA (4.9 times) versus the NA (1.8 times) plants, and the intercellular CO2 concentration decreased gently in NA (10.9%) and HA (25.3%) plants after 20 d of treatments compared to 0 days'. Furthermore, heat-acclimated plants were able to maintain significant activity levels of superoxide disumutase (SOD), catalase (CAT), guaiacol peroxidase (POD), and transcription levels of genes encoding these enzymes; in addition, HA plants displayed lower malondialdehyde content and lower electrolyte leakage than NA plants. These results suggest that maintenance of activity and transcription levels of antioxidant enzymes as well as photosynthesis are associated with variable thermostability in HA and NA plants. This likely occurs through cellular membrane stabilization and improvements in water use efficiency in the photosynthetic process during heat stress. The association between antioxidant enzyme activity and gene expression, both of which may vary with genetic variation in heat tolerance, is important to further understand the molecular mechanisms that contribute to heat tolerance.
    Molecules 09/2014; 19(9):13564-13576. · 2.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rubisco activase (RCA) catalyzes the activation of Rubisco in vivo and plays a crucial role in regulating plant growth. In maize, only β-form RCA genes have been cloned and characterized. In this study, a genome-wide survey revealed the presence of an α-form RCA gene and a β-form RCA gene in the maize genome, herein referred to as ZmRCAα and ZmRCAβ, respectively. An analysis of genomic DNA and cDNA sequences suggested that alternative splicing of the ZmRCAβ pre-mRNA at its 3'UTR could produce two distinctive ZmRCAβ transcripts. Analyses by electrophoresis and matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry (MALDI-TOF-MS) showed that ZmRCAα and ZmRCAβ encode larger and smaller polypeptides of approximately 46 kD and 43 kD, respectively. Transcriptional analyses demonstrated that the expression levels of both ZmRCAα and ZmRCAβ were higher in leaves and during grain filling and that expression followed a specific cyclic day/night pattern. In 123 maize inbred lines with extensive genetic diversity, the transcript abundance and protein expression levels of these two RCA genes were positively correlated with grain yield. Additionally, both genes demonstrated a similar correlation with grain yield compared to three C4 photosynthesis genes. Our data suggest that, in addition to the β-form RCA-encoding gene, the α-form RCA-encoding gene also contributes to the synthesis of RCA in maize, and support the hypothesis that RCA genes may play an important role in determining maize productivity.
    Plant physiology 02/2014; · 7.39 Impact Factor