Article

Walkmycin B targets WalK (YycG), a histidine kinase essential for bacterial cell growth.

Department of Bioscience, Graduate School of Agriculture, Kinki University, Nara, Japan.
The Journal of Antibiotics (Impact Factor: 2.19). 02/2010; 63(2):89-94. DOI: 10.1038/ja.2009.128
Source: PubMed

ABSTRACT The WalK (a histidine kinase)/WalR (a response regulator, aka YycG/YycF) two-component system is indispensable in the signal transduction pathway for the cell-wall metabolism of Bacillus subtilis and Staphylococcus aureus. The inhibitors directed against WalK would be expected to have a bactericidal effect. After we screened 1368 culture broths of Streptomyces sp. by a differential growth assay, walkmycin A, B and C, which were produced by strain MK632-100F11, were purified using silica-gel column chromatography and HPLC. In this paper, the chemical structure of the major product (walkmycin B) was determined to be di-anthracenone (C(44)H(44)Cl(2)O(14)), which was very similar to BE40665A. MICs of walkmycin B against B. subtilis and S. aureus were 0.39 and 0.20 microg ml(-1), and IC(50) measurements against WalK were 1.6 and 5.7 microM, respectively. To clarify the affinity between WalK and walkmycin B, surface plasmon resonance was measured to obtain the equilibrium dissociation constant, K(D1), of 7.63 microM at the higher affinity site of B. subtilis WalK. These results suggest that walkmycin B inhibits WalK autophosphorylation by binding to the WalK cytoplasmic domain.

1 Bookmark
 · 
137 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Infections caused by bacterial biofilms are a significant global health problem, causing considerable patient morbidity and mortality and contributing to the economic burden of infectious disease. This review describes diverse strategies to combat bacterial biofilms, focusing firstly on small molecule interference with bacterial communication and signaling pathways, including quorum sensing and two-component signal transduction systems. Secondly we discuss enzymatic approaches to the degradation of extracellular matrix components to effect biofilm dispersal. Both of these approaches are based upon non-microbicidal mechanisms of action, and thereby do not place a direct evolutionary pressure on the bacteria to develop resistance. Such approaches have the potential to, in combination with conventional antibiotics, play an important role in the eradication of biofilm based bacterial infections.
    Current Opinion in Pharmacology 07/2013; · 5.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: WalK, a histidine kinase, and WalR, a response regulator, make up a two-component signal transduction system that is indispensable for the cell-wall metabolism of low GC Gram-positive bacteria. WalK inhibitors are likely to show bactericidal effects against methicillin-resistant Staphylococcus aureus . We discovered a new WalK inhibitor, designated waldiomycin, by screening metabolites from actinomycetes. Waldiomycin belongs to the family of angucycline antibiotics and is structurally related to dioxamycin. Waldiomycin inhibits WalK from S. aureus and Bacillus subtilis at IC50s 8.8 and 10.2 μM, respectively, and shows antibacterial activity with MICs ranging from 4 to 8 μg ml(-1) against methicillin-resistant S. aureus and B. subtilis.The Journal of Antibiotics advance online publication, 1 May 2013; doi:10.1038/ja.2013.33.
    The Journal of Antibiotics 05/2013; · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Treating staphylococcal biofilm-associated infections is challenging. Based on the findings that compound 2 targeting the HK domain of Staphylococcus epidermidis YycG has bactericidal and antibiofilm activities against staphylococci, six newly synthesized derivatives were evaluated for their antibacterial activities. The six derivatives of compound 2 inhibited autophosphorylation of recombinant YycG' and the IC50 values ranged from 24.2 to 71.2 μM. The derivatives displayed bactericidal activity against planktonic S. epidermidis or Staphylococcus aureus strains in the MIC range of 1.5-3.1 μM. All the derivatives had antibiofilm activities against the 6- and 24-h biofilms of S. epidermidis. Compared to the prototype compound 2, they had less cytotoxicity for Vero cells and less hemolytic activity for human erythrocytes. The derivatives showed antibacterial activities against clinical methicillin-resistant staphylococcal isolates. The structural modification of YycG inhibitors will assist the discovery of novel agents to eliminate biofilm infections and multidrug-resistant staphylococcal infections.
    Applied Microbiology and Biotechnology 04/2014; · 3.69 Impact Factor

Full-text

View
1 Download
Available from