Article

The degradation of microcystin-LR using doped visible light absorbing photocatalysts.

Innovation, Design and Sustainability Research Institute (IDeaS), The Robert Gordon University, Schoolhill, Aberdeen, UK.
Chemosphere (Impact Factor: 3.14). 02/2010; 78(9):1182-5. DOI: 10.1016/j.chemosphere.2009.12.003
Source: PubMed

ABSTRACT Microcystins are one of the primary hepatotoxic cyanotoxins released from cyanobacteria. The presence of these compounds in water has resulted in the death of both humans and domestic and wild animals. Although microcystins are chemically stable titanium dioxide photocatalysis has proven to be an effective process for the removal of these compounds in water. One problem with this process is that it requires UV light and therefore in order to develop effective commercial reactor units that could be powered by solar light it is necessary to utilize a photocatalyst that is active with visible light. In this paper we report on the application of four visible light absorbing photocatalysts for the destruction of microcystin-LR in water. The rhodium doped material proved to be the most effective material followed by a carbon-modified titania. The commercially available materials were both relatively poor photocatalysts under visible radiation while the platinum doped catalyst also displayed a limited activity for toxin destruction.

0 Bookmarks
 · 
174 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Photocatalytic water treatment using nanocrystalline titanium dioxide (NTO) is a well-known advanced oxidation process (AOP) for environmental remediation. With the in situ generation of electron-hole pairs upon irradiation with light, NTO can mineralize a wide range of organic compounds into harmless end products such as carbon dioxide, water, and inorganic ions. Photocatalytic degradation kinetics of pollutants by NTO is a topic of debate and the mostly reporting Langmuir-Hinshelwood kinetics must accompanied with proper experimental evidences. Different NTO morphologies or surface treatments on NTO can increase the photocatalytic efficiency in degradation reactions. Wisely designed photocatalytic reactors can decrease energy consumption or can avoid post-separation stages in photocatalytic water treatment processes. Doping NTO with metals or non-metals can reduce the band gap of the doped catalyst, enabling light absorption in the visible region. Coupling NTO photocatalysis with other water-treatment technologies can be more beneficial, especially in large-scale treatments. This review describes recent developments in the field of photocatalytic water treatment using NTO.
    Catalysts. 12/2012; 2(4):572-601.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The whole structure of higher plants is generated dynamically throughout the life cycle by the activity of stem cell niches at the apex of shoot and root. Hormone molecules and many transcription factors cooperate to balance the stem cell maintenance and differentiation. It is becoming increasingly clear that microRNA (miRNA) molecules are also participants in these processes. Here, we highlight the advances that have been made in regarding the roles of miRNAs in plant stem cell control. These advances provide a framework for our understanding of how signals are integrated to specify and position the stem cell niches in plants.
    Biochemical and Biophysical Research Communications 06/2011; 409(3):363-6. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cyanobacteria are ubiquitous microorganisms considered as important contributors to the formation of Earth's atmosphere and nitrogen fixation. However, they are also frequently associated with toxic blooms. Indeed, the wide range of hepatotoxins, neurotoxins and dermatotoxins synthesized by these bacteria is a growing environmental and public health concern. This paper provides a state of the art on the occurrence and management of harmful cyanobacterial blooms in surface and drinking water, including economic impacts and research needs. Cyanobacterial blooms usually occur according to a combination of environmental factors e.g., nutrient concentration, water temperature, light intensity, salinity, water movement, stagnation and residence time, as well as several other variables. These environmental variables, in turn, have promoted the evolution and biosynthesis of strain-specific, gene-controlled metabolites (cyanotoxins) that are often harmful to aquatic and terrestrial life, including humans. Cyanotoxins are primarily produced intracellularly during the exponential growth phase. Release of toxins into water can occur during cell death or senescence but can also be due to evolutionary-derived or environmentally-mediated circumstances such as allelopathy or relatively sudden nutrient limitation. Consequently, when cyanobacterial blooms occur in drinking water resources, treatment has to remove both cyanobacteria (avoiding cell lysis and subsequent toxin release) and aqueous cyanotoxins previously released. Cells are usually removed with limited lysis by physical processes such as clarification or membrane filtration. However, aqueous toxins are usually removed by both physical retention, through adsorption on activated carbon or reverse osmosis, and chemical oxidation, through ozonation or chlorination. While the efficient oxidation of the more common cyanotoxins (microcystin, cylindrospermopsin, anatoxin and saxitoxin) has been extensively reported, the chemical and toxicological characterization of their by-products requires further investigation. In addition, future research should also investigate the removal of poorly considered cyanotoxins (β-methylamino-alanine, lyngbyatoxin or aplysiatoxin) as well as the economic impact of blooms.
    Environment International 07/2013; 59(September 2013):303-327. · 6.25 Impact Factor

Full-text (2 Sources)

View
6 Downloads
Available from
Sep 4, 2014