Article

The degradation of microcystin-LR using doped visible light absorbing photocatalysts.

Innovation, Design and Sustainability Research Institute (IDeaS), The Robert Gordon University, Schoolhill, Aberdeen, UK.
Chemosphere (Impact Factor: 3.14). 02/2010; 78(9):1182-5. DOI: 10.1016/j.chemosphere.2009.12.003
Source: PubMed

ABSTRACT Microcystins are one of the primary hepatotoxic cyanotoxins released from cyanobacteria. The presence of these compounds in water has resulted in the death of both humans and domestic and wild animals. Although microcystins are chemically stable titanium dioxide photocatalysis has proven to be an effective process for the removal of these compounds in water. One problem with this process is that it requires UV light and therefore in order to develop effective commercial reactor units that could be powered by solar light it is necessary to utilize a photocatalyst that is active with visible light. In this paper we report on the application of four visible light absorbing photocatalysts for the destruction of microcystin-LR in water. The rhodium doped material proved to be the most effective material followed by a carbon-modified titania. The commercially available materials were both relatively poor photocatalysts under visible radiation while the platinum doped catalyst also displayed a limited activity for toxin destruction.

0 Bookmarks
 · 
191 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hollow glass microspheres coated with photocatalytic TiO2 (HGM-TiO2), recently became commercially available and have the distinct advantages of easy separation and recovery after treatment. With this in mind, we determined the optimum conditions for hydroxyl radical generation from HGM-TiO2 photocatalysis using response surface methodology (RSM). The hydroxyl radical yield and its average generation rate are critical parameters for practical applications of TiO2 photocatalysis. In this study, terephthalic acid was used as a hydroxyl radical trap because of the selective formation of the readily detectable hydroxyl radical adduct, 2-hydroxy terephthalic acid. Three independent variables, including loading of HGM-TiO2, concentration of terephthalic acid and irradiation time, were investigated. The 3D response surface graphs of hydroxyl radical yield and average hydroxyl radical generation rate indicated that optimum conditions of loading of HGM-TiO2, concentration of terephthalate acid and irradiation time were 8.0 g/L, 4.0 mM, and 20 min, respectively. Under these optimized conditions, we measured the photocatalysis employing HGM-TiO2 for the remediation of dimethyl phthalate (DMP), as a representative compound for problematic phthalate acid esters. HGM-TiO2 photocatalysis leads to the rapid destruction of DMP and there is a linear correlation between the DMP destruction and hydroxyl radical production. The results of our study demonstrate RSM can be used to readily determine the optimal conditions for hydroxyl radical production and the subsequent treatment of target compounds may be correlated to the hydroxyl radical production during HGM-TiO2 photocatalysis.
    Journal of Photochemistry and Photobiology A Chemistry 06/2013; 262:7–13. · 2.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Photocatalytic water treatment using nanocrystalline titanium dioxide (NTO) is a well-known advanced oxidation process (AOP) for environmental remediation. With the in situ generation of electron-hole pairs upon irradiation with light, NTO can mineralize a wide range of organic compounds into harmless end products such as carbon dioxide, water, and inorganic ions. Photocatalytic degradation kinetics of pollutants by NTO is a topic of debate and the mostly reporting Langmuir-Hinshelwood kinetics must accompanied with proper experimental evidences. Different NTO morphologies or surface treatments on NTO can increase the photocatalytic efficiency in degradation reactions. Wisely designed photocatalytic reactors can decrease energy consumption or can avoid post-separation stages in photocatalytic water treatment processes. Doping NTO with metals or non-metals can reduce the band gap of the doped catalyst, enabling light absorption in the visible region. Coupling NTO photocatalysis with other water-treatment technologies can be more beneficial, especially in large-scale treatments. This review describes recent developments in the field of photocatalytic water treatment using NTO.
    Catalysts. 12/2012; 2(4):572-601.
  • Chemical Engineering Journal 08/2013; 230:172-179. · 4.06 Impact Factor

Full-text (2 Sources)

Download
9 Downloads
Available from
Sep 4, 2014