Buried Higgs boson

Physical review D: Particles and fields (Impact Factor: 4.86). 10/2009; DOI: 10.1103/PHYSREVD.80.075008
Source: arXiv

ABSTRACT We present an extension of the MSSM where the dominant decay channel of the Higgs boson is a cascade decay into a four-gluon final state. In this model the Higgs is a pseudo-Goldstone boson of a broken global symmetry SU(3)-> SU(2). Both the global symmetry breaking and electroweak symmetry breaking are radiatively induced. The global symmetry breaking pattern also implies the existence of a light (few GeV) pseudo-Goldstone boson eta which is a singlet under the standard model gauge group. The h -> eta eta branching fraction is large, and typically dominates over the standard h -> b b decay. The dominant decay of eta is into two gluons, while the decays to photons, taus or lighter standard model flavors are suppressed at the level of 10^(-4) or more. With h-> 4 jets as the dominant decay, the Higgs could be as light as 78 GeV without being detected at LEP, while detection at the LHC is extremely challenging. However many of the super- and global symmetry partners of the standard model particles should be easily observable at the LHC. Furthermore, the LHC should be able to observe a "wrong Higgs" that is a 300-400 GeV heavy Higgs-like particle with suppressed couplings to W and Z that by itself does not account for electroweak precision observables and the unitarity of WW scattering. At the same time, the true Higgs is deeply buried in the QCD background.


Available from: Brando Bellazzini, Dec 22, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an overview of composite Higgs models in light of the discovery of the Higgs boson. The small value of the physical Higgs mass suggests that the Higgs quartic is likely loop generated, thus models with tree-level quartics will generically be more tuned. We classify the various models (including bona fide composite Higgs, little Higgs, holographic composite Higgs, twin Higgs and dilatonic Higgs) based on their predictions for the Higgs potential, review the basic ingredients of each of them, and quantify the amount of tuning needed, which is not negligible in any model. We explain the main ideas for generating flavor structure and the main mechanisms for protecting against large flavor violating effects, and present a summary of the various coset models that can result in realistic pseudo-Goldstone Higgses. We review the current experimental status of such models by discussing the electroweak precision, flavor and direct search bounds, and comment on UV completions and on ways to incorporate dark matter.
    European Physical Journal C 05/2014; 74(2766). DOI:10.1140/epjc/s10052-014-2766-x · 5.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review provides an elementary discussion of electroweak symmetry breaking in the minimal and the next-to-minimal supersymmetric models with the focus on the fine-tuning problem — the tension between natural electroweak symmetry breaking and the direct search limit on the Higgs boson mass. Two generic solutions of the fine-tuning problem are discussed in detail: models with unusual Higgs decays; and models with unusual pattern of soft supersymmetry breaking parameters.
    Modern Physics Letters A 11/2011; 24(21). DOI:10.1142/S0217732309031466 · 1.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We perform an extensive survey of non-standard Higgs decays that are consistent with the 125 GeV Higgs-like resonance. Our aim is to motivate a large set of new experimental analyses on the existing and forthcoming data from the Large Hadron Collider (LHC). The explicit search for exotic Higgs decays presents a largely untapped discovery opportunity for the LHC collaborations, as such decays may be easily missed by other searches. We emphasize that the Higgs is uniquely sensitive to the potential existence of new weakly coupled particles and provide a unified discussion of a large class of both simplified and complete models that give rise to characteristic patterns of exotic Higgs decays. We assess the status of exotic Higgs decays after LHC Run 1. In many cases we are able to set new nontrivial constraints by reinterpreting existing experimental analyses. We point out that improvements are possible with dedicated analyses and perform some preliminary collider studies. We prioritize the analyses according to their theoretical motivation and their experimental feasibility. This document is accompanied by a website that will be continuously updated with further information:
    Physical Review D 12/2013; DOI:10.1103/PhysRevD.90.075004 · 4.86 Impact Factor