Glutamatergic and Nonglutamatergic Neurons of the Ventral Tegmental Area Establish Local Synaptic Contacts with Dopaminergic and Nondopaminergic Neurons

National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 01/2010; 30(1):218-29. DOI: 10.1523/JNEUROSCI.3884-09.2010
Source: PubMed

ABSTRACT The ventral tegmental area (VTA) contributes to reward and motivation signaling. In addition to the well established populations of dopamine (DA) or GABA VTA neurons, glutamatergic neurons were recently discovered in the VTA. These glutamatergic neurons express the vesicular glutamate transporter 2, VGluT2. To investigate whether VTA glutamatergic neurons establish local synapses, we tagged axon terminals from resident VTA neurons by intra-VTA injection of Phaseolus vulgaris leucoagglutinin (PHA-L) or an adeno-associated virus encoding wheat germ agglutinin (WGA) and by immunoelectron microscopy determined the presence of VGluT2 in PHA-L- or WGA-positive terminals. We found that PHA-L- or WGA-positive terminals from tagged VTA cells made asymmetric or symmetric synapses within the VTA. VGluT2 immunoreactivity was detected in the vast majority of PHA-L- or WGA-positive terminals forming asymmetric synapses. These results indicate that both VTA glutamatergic and nonglutamatergic (likely GABAergic) neurons establish local synapses. To examine the possible DAergic nature of postsynaptic targets of VTA glutamatergic neurons, we did triple immunolabeling with antibodies against VGluT2, tyrosine hydroxylase (TH), and PHA-L. From triple-labeled tissue, we found that double-labeled PHA-L (+)/VGluT2 (+) axon terminals formed synaptic contacts on dendrites of both TH-positive and TH-negative cells. Consistent with these anatomical observations, in whole-cell slice recordings of VTA neurons we observed that blocking action potential activity significantly decreased the frequency of synaptic glutamatergic events in DAergic and non-DAergic neurons. These observations indicate that resident VTA glutamatergic neurons are likely to affect both DAergic and non-DAergic neurotransmission arising from the VTA.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Current models of addiction and anxiety stem from the idea that aberrant function and remodeling of neural circuits cause the pathological behaviors. According to this hypothesis, a disease-defining experience (for example, drug reward or stress) would trigger specific forms of synaptic plasticity, which in susceptible subjects would become persistent and lead to the disease. While the notion of synaptic diseases has received much attention, no candidate disorder has been sufficiently investigated to yield new, rational therapies that could be tested in the clinic. Here we review the arguments in favor of abnormal neuronal plasticity underlying addiction and anxiety disorders, with a focus on the functional diversity of neurons that make up the circuits involved. We argue that future research must strive to obtain a comprehensive description of the relevant functional anatomy. This will allow identification of molecular mechanisms that govern the induction and expression of disease-relevant plasticity in identified neurons. To establish causality, one will have to test whether normalization of function can reverse pathological behavior. With these elements in hand, it will be possible to propose blueprints for manipulations to be tested in translational studies. The challenge is daunting, but new techniques, above all optogenetics, may enable decisive advances.
    Nature Neuroscience 11/2014; DOI:10.1038/nn.3849 · 14.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Modulating neuronal activity by electrical stimulation has expanded from the realm of motor indications into the field of psychiatric disorders in the past 10 years. The medial forebrain bundle (MFB), with a seminal role in motor, reward orientated and affect regulation behaviors, and its afferent and efferent loci, have been targeted in several DBS trials in patients with psychiatric disorders. However, little is known about the consequences of modulating the MFB in affective disorders. The paper reviews the relevant pre-clinical literature investigating electrical stimulation of regions associated with the MFB in the context of several models of psychiatric disorders, in particular depression. The clinical data is promising but limited, and pre-clinical studies are essential for improved understanding of the anatomy, the connectivity, and the consequences of stimulation of the MFB and regions associated with the neurocircuitry of psychiatric disorders. Current data suggests that the MFB is at a "privileged" position on this circuitry and its stimulation can simultaneously modulate activity at other key sites, such as the nucleus accumbens, the ventromedial prefrontal cortex or the ventral tegmental area. Future experimental work will need to shed light on the anti-depressive mechanisms of MFB stimulation in order to optimize clinical interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Neuroscience & Biobehavioral Reviews 11/2014; 49. DOI:10.1016/j.neubiorev.2014.11.018 · 10.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Systemic administration of cocaine is thought to decrease the firing rates of ventral tegmental area (VTA) dopamine (DA) neurons. However, this view is based on categorizations of recorded neurons as DA neurons using preselected electrophysiological characteristics lacking neurochemical confirmation. Without applying cellular preselection, we recorded the impulse activity of VTA neurons in response to cocaine administration in anesthetized adult rats. The phenotype of recorded neurons was determined by their juxtacellular labeling and immunohistochemical detection of tyrosine hydroxylase (TH), a DA marker. We found that intravenous cocaine altered firing rates in the majority of recorded VTA neurons. Within the cocaine-responsive neurons, half of the population was excited and the other half was inhibited. Both populations had similar discharge rates and firing regularities, and most neurons did not exhibit changes in burst firing. Inhibited neurons were more abundant in the posterior VTA, whereas excited neurons were distributed evenly throughout the VTA. Cocaine-excited neurons were more likely to be excited by footshock. Within the subpopulation of TH-positive neurons, 36% were excited by cocaine and 64% were inhibited. Within the subpopulation of TH-negative neurons, 44% were excited and 28% were inhibited. Contrary to the prevailing view that all DA neurons are inhibited by cocaine, we found a subset of confirmed VTA DA neurons that is excited by systemic administration of cocaine. We provide evidence indicating that DA neurons are heterogeneous in their response to cocaine and that VTA non-DA neurons play an active role in processing systemic cocaine. Copyright © 2015 the authors 0270-6474/15/351965-14$15.00/0.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 02/2015; 35(5):1965-78. DOI:10.1523/JNEUROSCI.3422-13.2015 · 6.75 Impact Factor


Available from