Article

Humoral immune responses against the Mycobacterium tuberculosis 38-kilodalton, MTB48, and CFP-10/ESAT-6 antigens in tuberculosis.

Institute for Tuberculosis Research, 309th Hospital of Chinese PLA, Beijing 100091, China.
Clinical and vaccine Immunology: CVI (Impact Factor: 2.37). 03/2010; 17(3):372-5. DOI: 10.1128/CVI.00287-09
Source: PubMed

ABSTRACT The diagnosis of smear-negative and culture-negative patients with active tuberculosis (TB) is challenging. The detection of Mycobacterium tuberculosis-specific antibodies in human sera has been an important diagnostic aid. However, detection of antibody responses to a single antigen usually has a low sensitivity for diagnosis of TB. In this study, humoral immune responses against recombinant M. tuberculosis 38-kDa, MTB48, and CFP-10/ESAT-6 (culture filtrate protein 10/6-kDa early secreted antigen target of M. tuberculosis) antigens in 250 Chinese TB patients and 260 healthy subjects were evaluated by an enzyme-linked immunosorbent assay (ELISA). The levels of antibodies against those antigens in TB patients, even in bacterium-negative ones, were significantly higher than those in healthy subjects (P < 0.001). The serodiagnostic sensitivities to detect antibodies against individual antigens, i.e., recombinant M. tuberculosis 38-kDa, MTB48, and CFP-10/ESAT-6 antigens, in TB patients were 73.6%, 73.2%, and 60.4%, respectively, with specificities of 85.4%, 77.7%, and 73.8%, respectively. Importantly, the sensitivity to positively detect humoral responses to one of the antigens increased further. Our data suggest that the humoral immune responses to M. tuberculosis antigens in TB patients are heterogeneous. The 38-kDa, MTB48, and CFP-10/ESAT-6 antigens can be used as the cocktail antigens in the serodiagnosis of active TB, especially for smear- or culture-negative TB cases.

Download full-text

Full-text

Available from: Xueqiong Wu, Jun 27, 2015
0 Followers
 · 
118 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular epidemiology has revealed that Mycobacterium tuberculosis (Mtb), formerly regarded as highly conserved species, displays a considerable degree of genetic variability that can influence the outcome of the disease as well as the innate and adaptive immune response. Recent studies have demonstrated that Mtb families found worldwide today differ in pathology, transmissibility, virulence, and development of immune response. By proteomic approaches seven proteins that were differentially expressed between a local clinical isolate from Latin-American-Mediterranean (LAM) and from Haarlem (H) lineages were identified. In order to analyze the immunogenic ability, recombinant Rv2241, Rv0009, Rv0407, and Rv2624c proteins were produced for testing specific antibody responses. We found that these proteins induced humoral immune responses in patients with drug-sensitive and drug-resistant tuberculosis with substantial cross-reactivity among the four proteins. Moreover, such reactivity was also correlated with anti-Mtb-cell surface IgM, but not with anti-ManLAM, anti-PPD, or anti-Mtb-surface IgG antibodies. Therefore, the present results describe new Mtb antigens with potential application as biomarkers of TB.
    BioMed Research International 01/2014; 2014:741309. DOI:10.1155/2014/741309 · 2.71 Impact Factor
  • Source
    Understanding Tuberculosis - Global Experiences and Innovative Approaches to the Diagnosis, 02/2012; , ISBN: 978-953-307-938-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Considerable effort has been directed toward controlling tuberculosis, which kills almost two million people yearly. High on the research agenda is the discovery of biomarkers of active tuberculosis (TB) for diagnosis and for monitoring treatment outcome. Rational biomarker discovery requires understanding host-pathogen interactions leading to biomarker expression. Here we report a systems immunology approach integrating clinical data and bacterial metabolic and regulatory information with high-throughput detection in human serum of antibodies to the entire Mycobacterium tuberculosis proteome. Sera from worldwide TB suspects recognized approximately 10% of the bacterial proteome. This result defines the M. tuberculosis immunoproteome, which is rich in membrane-associated and extracellular proteins. Additional analyses revealed that during active tuberculosis (i) antibody responses focused on an approximately 0.5% of the proteome enriched for extracellular proteins, (ii) relative target preference varied among patients, and (iii) responses correlated with bacillary burden. These results indicate that the B cell response tracks the evolution of infection and the pathogen burden and replicative state and suggest functions associated with B cell-rich foci seen in tuberculous lung granulomas. Our integrated proteome-scale approach is applicable to other chronic infections characterized by diverse antibody target recognition.
    Proceedings of the National Academy of Sciences 08/2010; 107(33):14703-8. DOI:10.1073/pnas.1009080107 · 9.81 Impact Factor