Direct and indirect effects of microstructured titanium substrates on the induction of mesenchymal stem cell differentiation towards the osteoblast lineage.

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA.
Biomaterials (Impact Factor: 8.31). 04/2010; 31(10):2728-35. DOI: 10.1016/j.biomaterials.2009.12.029
Source: PubMed

ABSTRACT Microstructured and high surface energy titanium substrates increase osseointegration in vivo. In vitro, osteoblast differentiation is increased, but effects of the surface directly on multipotent mesenchymal stem cells (MSCs) and consequences for MSCs in the peri-implant environment are not known. We evaluated responses of human MSCs to substrate surface properties and examined the underlying mechanisms involved. MSCs exhibited osteoblast characteristics (alkaline phosphatase, RUNX2, and osteocalcin) when grown on microstructured Ti; this effect was more robust with increased hydrophilicity. Factors produced by osteoblasts grown on microstructured Ti were sufficient to induce co-cultured MSC differentiation to osteoblasts. Silencing studies showed that this was due to signaling via alpha2beta1 integrins in osteoblasts on the substrate surface and paracrine action of secreted Dkk2. Thus, human MSCs are sensitive to substrate properties that induce osteoblastic differentiation; osteoblasts interact with these surface properties via alpha2beta1 and secrete Dkk2, which acts on distal MSCs.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The extracellular matrix is composed of a variety of proteins, polysaccharides, and glycosaminoglycans that self-assemble into a hierarchical order of nanometer- to micrometer-scale fibrils and fibers. The shapes, sizes, and elasticity present within this highly ordered meshwork regulate behaviors in most cell types. It has been well documented that cellular migration, proliferation, differentiation, and tissue development are all influenced by matrix geometries and compliance, but how these external biophysical cues are translated into activated intracellular signaling cascades remains poorly understood. Fortunately, technological improvements in artificial substrate fabrication have provided biologists with tools to test cellular interactions within controlled three-dimensional environments. Here, we review cellular responses to biophysical cues and discuss their clinical relevancy and application. We focus especially on integrative approaches that aim to first characterize the properties of specific extracellular matrices and then precisely fabricate biomimetic materials to elucidate how relevant cells respond to the individual biophysical cues present in their native tissues. Through these types of comprehensive studies, biologists have begun to understand and appreciate how exceedingly small features can have a significant impact on the regulation, development, and homeostasis of cells and tissues.
    Annual review of biomedical engineering 07/2013; 15:155-76. · 11.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the interactions involved in the adhesion of living cells on surfaces is essential in the field of tissue engineering and biomaterials. In this study, we investigate the early adhesion of living human mesenchymal stem cells (hMSCs) on flat titanium dioxide (TiO(2) ) and on nanoporous crystallized TiO(2) surfaces with the use of atomic force microscopy-based single-cell force spectroscopy measurements. The choice of the substrate surfaces was motivated by the fact that implants widely used in orthopaedic and dental surgery are made in Ti and its alloys. Nanoporous TiO(2) surfaces were produced by anodization of Ti surfaces. In a typical force spectroscopy experiment, one living hMSC, immobilized onto a fibronectine-functionalized tipless lever is brought in contact with the surface of interest for 30 s before being detached while recording force-distance curves. Adhesion of hMSCs on nanoporous TiO(2) substrates having inner pore diameter of 45 nm was lower by approximately 25% than on TiO(2) flat surfaces. Force-distance curves exhibited also force steps that can be related to the pulling of membrane tethers from the cell membrane. The mean force step was equal to 35 pN for a given speed independently of the substrate surface probed. The number of tethers observed was substrate dependent. Our results suggest that the strength of the initial adhesion between hMSCs and flat or nanoporous TiO(2) surfaces is driven by the adsorption of proteins deposited from serum in the culture media.
    Journal of Molecular Recognition 05/2012; 25(5):262-9. · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ceramic-derived materials have shown enhanced osteogenic potential for bone tissue engineering applications. Silica is the major component of bioglass, and titania, the oxide complex of titanium, has been found to enhance osteoblast differentiation. In this study, three groups of sol-gel-derived silica-titania fibrous meshes with precursor ratios of Ti:Si = 7:3, 1:1, 3:7 were fabricated by electrospinning. The effects of silica content on the crystal phase and morphology of silica-titania hybrid nanofiber meshes were also analyzed by scanning electron microscopy, X-ray diffraction, and laser confocal microscopy. The osteogenic potential of the silica-titania meshes was evaluated by seeding mesenchymal stem cells (MSCs) on each mesh and determining cell number, osteodifferentiation markers, and osteopontin production over time. Our results show that cells proliferated throughout the mesh surfaces with similar morphology in all groups. Decreased cell proliferation was observed with the fiber meshes compared with glass controls, whereas cell differentiation toward osteoblast was enhanced on the mesh groups, especially on the Ti:Si = 7:3 group. These findings suggest that higher fiber diameter, degree of crystallization, and titania content of nanofibers can enhance osteodifferentiation of MSCs. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:3511-3517, 2012.
    Journal of Biomedical Materials Research Part A 07/2012; 100(12):3511-7. · 2.83 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014