Article

Bench-to-bedside review: Delirium in ICU patients - importance of sleep deprivation

Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
Critical care (London, England) 12/2009; 13(6):234. DOI: 10.1186/cc8131
Source: PubMed

ABSTRACT Delirium occurs frequently in critically ill patients and has been associated with both short-term and long-term consequences. Efforts to decrease delirium prevalence have been directed at identifying and modifying its risk factors. One potentially modifiable risk factor is sleep deprivation. Critically ill patients are known to experience poor sleep quality with severe sleep fragmentation and disruption of sleep architecture. Poor sleep while in the intensive care unit is one of the most common complaints of patients who survive critical illness. The relationship between delirium and sleep deprivation remains controversial. However, studies have demonstrated many similarities between the clinical and physiologic profiles of patients with delirium and sleep deprivation. This article aims to review the literature, the clinical and neurobiologic consequences of sleep deprivation, and the potential relationship between sleep deprivation and delirium in intensive care unit patients. Sleep deprivation may prove to be a modifiable risk factor for the development of delirium with important implications for the acute and long-term outcome of critically ill patients.

11 Followers
 · 
217 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intensive care unit (ICU) environmental factors such as noise and light have been cited as important causes of sleep deprivation in critically ill patients. Previous studies indicated that using earplugs and eye masks can improve REM sleep in healthy subjects in simulated ICU environment, and improve sleep quality in ICU patients. This study aimed to determine the effects of using earplugs and eye masks with relaxing background music on sleep, melatonin and cortisol levels in ICU patients. Fifty patients who underwent a scheduled cardiac surgery and were expected to stay at least 2 nights in Cardiac Surgical ICU (CSICU) were included. They were randomized to sleep with or without earplugs and eye masks combined with 30-minute relaxing music during the postoperative nights in CSICU. Urine was analyzed for nocturnal melatonin and cortisol levels. Subjective sleep quality was evaluated using the Chinese version of Richards-Campbell Sleep Questionnaire (a visual analog scale, ranging 0-100). Data from 45 patients (20 in intervention group, 25 in control group) were analyzed. Significant differences were found between groups in depth of sleep, falling asleep, awakenings, falling asleep again after awakening and overall sleep quality (P < 0.05). Perceived sleep quality was better in the intervention group. No group differences were found in urinary melatonin levels and cortisol levels for the night before surgery, and the first and second nights post-surgery (P > 0.05). The urinary melatonin levels of the first and second postoperative nights were significantly lower than those of the night before surgery (P = 0.01). The opposite pattern was seen with urinary cortisol levels (P = 0.00). This combination of non-pharmacological interventions is useful for promoting sleep in ICU adult patients; however, any influence on nocturnal melatonin levels and cortisol level may have been masked by several factors such as the timing of surgery, medication use and individual differences. Larger scale studies would be needed to examine the potential influences of these factors on biological markers and intervention efficacy on sleep. Chinese Clinical Trial Registry: ChiCTR-IOR-14005511 . Registered 21 November 2014.
    Critical care (London, England) 12/2015; 19(1):855. DOI:10.1186/s13054-015-0855-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: In 2013, the American College of Critical Care Medicine published a revised version of the pain, agitation, and delirium guidelines. The guidelines included an ICU pain, agitation, and delirium care bundle designed to facilitate implementation of the pain, agitation, and delirium guidelines. Design: Review article. Setting: Multispecialty critical care units. Patients: Adult ICU patients. Interventions: This article describes: 1) the ICU pain, agitation, and delirium care bundle in more detail, linking pain, sedation/agitation, and delirium management in an integrated and interdisciplinary fashion; 2) pain, agitation, and delirium implementation strategies; and 3) the potential synergistic benefits of linking pain, agitation, and delirium management strategies to other evidence-based ICU practices, including spontaneous breathing trials, ICU early mobility programs, and ICU sleep hygiene programs, in order to improve ICU patient outcomes and to reduce costs of care. Results: Linking the ICU pain, agitation, and delirium management strategies with spontaneous awakening trials, spontaneous breathing trials, and early mobility and sleep hygiene programs is associated with significant improvements in ICU patient outcomes and reductions in their costs of care. Conclusions: The 2013 ICU pain, agitation, and delirium guidelines provide critical care providers with an evidence-based, integrated, and interdisciplinary approach to managing pain, agitation/sedation, and delirium. The ICU pain, agitation, and delirium care bundle provides a framework for facilitating implementation of the pain, agitation, and delirium guidelines. Widespread implementation of the ICU pain, agitation, and delirium care bundle is likely to result in large-scale improvements in ICU patient outcomes and significant reductions in costs.
    Critical Care Medicine 01/2013; 41:S99-S115. DOI:10.1097/CCM.0b013e3182a16ff0 · 6.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sleep disturbance is commonly encountered amongst intensive care patients and has significant psychophysiological effects, which protract recovery and increases mortality. Bio-physiological monitoring of intensive care patients reveal alterations in sleep architecture, with reduced sleep quality and continuity. The etiological causes of sleep disturbance are considered to be multifactorial, although environmental stressors namely, noise, light and clinical care interactions have been frequently cited in both subjective and objective studies. As a result, interventions are targeted towards modifiable factors to ameliorate their impact. This paper reviews normal sleep physiology and the impact that sleep disturbance has on patient psychophysiological recovery, and the contribution that the clinical environment has on intensive care patients’ sleep.
    02/2015; 5(3). DOI:10.1186/s13613-015-0043-2

Preview (4 Sources)

Download
2 Downloads
Available from