Mild Hypoxia Enhances Proliferation and Multipotency of Human Neural Stem Cells

Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
PLoS ONE (Impact Factor: 3.23). 01/2010; 5(1):e8575. DOI: 10.1371/journal.pone.0008575
Source: PubMed

ABSTRACT Neural stem cells (NSCs) represent an optimal tool for studies and therapy of neurodegenerative diseases. We recently established a v-myc immortalized human NSC (IhNSC) line, which retains stem properties comparable to parental cells. Oxygen concentration is one of the most crucial environmental conditions for cell proliferation and differentiation both in vitro and in vivo. In the central nervous system, physiological concentrations of oxygen range from 0.55 to 8% oxygen. In particular, in the in the subventricular zone niche area, it's estimated to be 2.5 to 3%.
We investigated in vitro the effects of 1, 2.5, 5, and 20% oxygen concentrations on IhNSCs both during proliferation and differentiation. The highest proliferation rate, evaluated through neurosphere formation assay, was obtained at 2.5 and 5% oxygen, while 1% oxygen was most noxious for cell survival. The differentiation assays showed that the percentages of beta-tubIII+ or MAP2+ neuronal cells and of GalC+ oligodendrocytes were significantly higher at 2.5% compared with 1, 5, or 20% oxygen at 17 days in vitro. Mild hypoxia (2.5 to 5% oxygen) promoted differentiation into neuro-oligodendroglial progenitors as revealed by the higher percentage of MAP2+/Ki67+ and GalC+/Ki67+ residual proliferating progenitors, and enhanced the yield of GABAergic and slightly of glutamatergic neurons compared to 1% and 20% oxygen where a significant percentage of GFAP+/nestin+ cells were still present at 17 days of differentiation.
These findings raise the possibility that reduced oxygen levels occurring in neuronal disorders like cerebral ischemia transiently lead to NSC remaining in a state of quiescence. Conversely, mild hypoxia favors NSC proliferation and neuronal and oligodendroglial differentiation, thus providing an important advance and a useful tool for NSC-mediated therapy of ischemic stroke and neurodegenerative diseases like Parkinson's disease, multiple sclerosis, and Alzheimer's disease.

36 Reads
  • Source
    • "This supports another study in which midbrain NSCs were found to have a higher proliferating rate than forebrain NSC cells, although this difference was only seen when the NSCs were cultured at low oxygen tension [21]. For both midbrain and forebrain NSCs we found a significantly higher proliferation at low compared to high oxygen tension, which is in agreement with other studies on rodent NPCs [17], [22], [25], [48] and human NPCs [21], [23], [49] and human ESCs [20]. Only very few cells in the cultures had spontaneously differentiated into neurons (β-tub III-ir) of which few were found to co-express the catecholaminergic marker TH. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural stem cells (NSCs) constitute a promising source of cells for transplantation in Parkinson's disease (PD), but protocols for controlled dopaminergic differentiation are not yet available. Here we investigated the influence of oxygen on dopaminergic differentiation of human fetal NSCs derived from the midbrain and forebrain. Cells were differentiated for 10 days in vitro at low, physiological (3%) versus high, atmospheric (20%) oxygen tension. Low oxygen resulted in upregulation of vascular endothelial growth factor and increased the proportion of tyrosine hydroxylase-immunoreactive (TH-ir) cells in both types of cultures (midbrain: 9.1±0.5 and 17.1±0.4 (P<0.001); forebrain: 1.9±0.4 and 3.9±0.6 (P<0.01) percent of total cells). Regardless of oxygen levels, the content of TH-ir cells with mature neuronal morphologies was higher for midbrain as compared to forebrain cultures. Proliferative Ki67-ir cells were found in both types of cultures, but the relative proportion of these cells was significantly higher for forebrain NSCs cultured at low, as compared to high, oxygen tension. No such difference was detected for midbrain-derived cells. Western blot analysis revealed that low oxygen enhanced β-tubulin III and GFAP expression in both cultures. Up-regulation of β-tubulin III was most pronounced for midbrain cells, whereas GFAP expression was higher in forebrain as compared to midbrain cells. NSCs from both brain regions displayed less cell death when cultured at low oxygen tension. Following mictrotransplantation into mouse striatal slice cultures predifferentiated midbrain NSCs were found to proliferate and differentiate into substantial numbers of TH-ir neurons with mature neuronal morphologies, particularly at low oxygen. In contrast, predifferentiated forebrain NSCs microtransplanted using identical conditions displayed little proliferation and contained few TH-ir cells, all of which had an immature appearance. Our data may reflect differences in dopaminergic differentiation capacity and region-specific requirements of NSCs, with the dopamine-depleted striatum cultured at low oxygen offering an attractive micro-environment for midbrain NSCs.
    PLoS ONE 05/2014; 9(5):e96465. DOI:10.1371/journal.pone.0096465 · 3.23 Impact Factor
  • Source
    • "Interestingly, the components of AHR, circadian and hypoxic pathways are characterized by a PAS domain that serves as an interface for protein-protein interactions [60]. Moreover, cell proliferation and differentiation both in vitro and in vivo are highly influenced by oxygen concentration, and neuronal stem cell proliferation and neuronal and oligodendroglial differentiation are enhanced by a mild level of hypoxia [61]. Intriguingly, EIF2B3 encodes one of the subunits of initiation factor EIF2B, which catalyzes the exchange of eukaryotic initiation factor 2-bound guanosine-diphosphate (GDP) for guanosine-5'-triphosphate (GTP), representing an essential factor for protein synthesis, and mutations in this gene have been associated with neurodegenerative and white matter diseases [62-64]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hunter syndrome (HS) is a lysosomal storage disease caused by iduronate-2-sulfatase (IDS) deficiency and loss of ability to break down and recycle the glycosaminoglycans, heparan and dermatan sulfate, leading to impairment of cellular processes and cell death. Cell activities and functioning of intracellular organelles are controlled by the clock genes (CGs), driving the rhythmic expression of clock controlled genes (CCGs). We aimed to evaluate the expression of CGs and downstream CCGs in HS, before and after enzyme replacement treatment with IDS. The expression levels of CGs and CCGs were evaluated by a whole transcriptome analysis through Next Generation Sequencing in normal primary human fibroblasts and fibroblasts of patients affected by HS before and 24 h/144 h after IDS treatment. The time related expression of CGs after synchronization by serum shock was also evaluated by qRT-PCR before and after 24 hours of IDS treatment. In HS fibroblasts we found altered expression of several CGs and CCGs, with dynamic changes 24 h and 144 h after IDS treatment. A semantic hypergraph-based analysis highlighted five gene clusters significantly associated to important biological processes or pathways, and five genes, AHR, HIF1A, CRY1, ITGA5 and EIF2B3, proven to be central players in these pathways. After synchronization by serum shock and 24 h treatment with IDS the expression of ARNTL2 at 10 h (p = 0.036), PER1 at 4 h (p = 0.019), PER2 at 10 h (p = 0.041) and 16 h (p = 0.043) changed in HS fibroblasts. CG and CCG expression is altered in HS fibroblasts and IDS treatment determines dynamic modifications, suggesting a direct involvement of the CG machinery in the physiopathology of cellular derangements that characterize HS.
    BMC Medical Genomics 10/2013; 6(1):37. DOI:10.1186/1755-8794-6-37 · 2.87 Impact Factor
  • Source
    • "Functionally, hypoxia promotes proliferation and multipotentiality of CNS precursors [33] and promotes proliferation of human mesencephalic precursors [34]. OCT4 expression may therefore be upregulated inside the neurosphere due to the low O2 tension inside neuropheres [35]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurospheres are used as in vitro assay to measure the properties of neural stem cells. To investigate the molecular and phenotypic heterogeneity of neurospheres, molecular beacons (MBs) targeted against the stem cell markers OCT4 and SOX2 were designed, and synthesized with a 2'-O-methyl RNA backbone. OCT4 and SOX2 MBs were transfected into human embryonic mesencephalon derived cells, which spontaneously form neurospheres when grown on poly-L-ornitine/fibronectin matrix and medium complemented with bFGF. OCT4 and SOX2 gene expression were tracked in individual cell using the MBs. Quantitative image analysis every day for seven days showed that the OCT4 and SOX2 mRNA-expressing cells clustered in the centre of the neurospheres cultured in differentiation medium. By contrast, cells at the periphery of the differentiating spheres developed neurite outgrowths and expressed the tyrosine hydroxylase protein, indicating terminal differentiation. Neurospheres cultured in growth medium contained OCT4 and SOX2-positive cells distributed throughout the entire sphere, and no differentiating neurones. Gene expression of SOX2 and OCT4 mRNA detected by MBs correlated well with gene and protein expression measured by qRT-PCR and immunostaining, respectively. These experimental data support the theoretical model that stem cells cluster in the centre of neurospheres, and demonstrate the use of MBs for the spatial localization of specific gene-expressing cells within heterogeneous cell populations.
    PLoS ONE 08/2013; 8(8):e73669. DOI:10.1371/journal.pone.0073669 · 3.23 Impact Factor
Show more