Regioselective exohedral functionalization of La@C82 and its 1,2,3,4,5-pentamethylcyclopentadiene and adamantylidene adducts.

Department of Chemistry, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan.
Chemistry (Impact Factor: 5.93). 02/2010; 16(7):2193-7. DOI: 10.1002/chem.200902512
Source: PubMed

ABSTRACT The first regioselective functionalization of La@C(82) by two different groups has been performed. Bis-adducts of La@C(82) with Cp* and adamantylidene were synthesized by using two different routes and characterized. Spectroscopic analysis and theoretical calculations reveal that the addition position is controlled by the charge density and p-orbital axis vector value of the fullerene cage.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent breakthroughs achieved in the chemical functionalization of endohedral metallofullerenes (EMFs), especially single crystallographic X-ray characterizations of their derivatives, have presented fundamentally new insights into the structures and properties of these metal-carbon hybrid molecules, and have also brought immense potential applications. In particular, the interplay between the encapsulated metallic species and the fullerene cage has been well investigated. On one hand, the position and motion of the encapsulated metals can be effectively controlled by exohedral modification. On the other hand, the cage structures, the chemical behaviours of cage carbons and thus the chemical reactivity of the whole molecule are also apparently influenced by the electronic configuration and geometrical conformation of the internal metals via strong metal-cage interactions. In this article, we contribute a systematic review of the important chemical transformations of EMFs reported to date, including disilylation, 1,3-dipolar cycloaddition with ylides, cyclopropanation with carbenes and carbanions, cycloaddition with dienes and benzyne, radical reactions, and other miscellaneous reactions, in addition to noncovalent interactions such as supramolecular complexation. The roles that internal metals play in controlling the reactivity of cage carbons are particularly emphasized. Finally, some applicable materials based on EMFs and their derivatives are summarized and practical perspectives are proposed.
    Chemical Communications 03/2011; 47(21):5942-57. · 6.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The last two decades have witnessed major advances in the synthesis and characterization of endohedral fullerenes. These species have interesting physicochemical properties with many potential interesting applications in the fields of magnetism, superconductivity, nonlinear optical properties, radioimmunotherapy, and magnetic resonance imaging contrast agents, among others. In addition to the synthesis and characterization, the chemical functionalization of these species has been a main focus of research for at least four reasons: first, to help characterize endohedral fullerenes that could not be well described structurally otherwise; second, to generate materials with fine-tuned properties leading to enhanced functionality in one of their multiple potential applications; third, to produce water-soluble endohedral fullerenes needed for their use in medicinal sciences; and fourth, to generate electron donor-acceptor conjugates that can be used in solar energy conversion/storage. The functionalization of these species has been achieved through different types of reactions, the most common being the Diels-Alder reactions, 1,3-dipolar cycloadditions, Bingel-Hirsch reactions, and free-radical reactions. It has been found that the performance of these reactions in endohedral fullerenes may be quite different from that of the empty fullerenes. Indeed, encapsulated species have a large influence on the thermodynamics, kinetics, and regiochemistry of these reactions. A detailed understanding of the changes in chemical reactivity due to incarceration of atoms or clusters of atoms is essential to assist the synthesis of new functionalized endohedral fullerenes with specific properties. This Perspective seeks to highlight the key role played by computational chemistry in the analysis of the chemical reactivity of these systems. It is shown that the information obtained through calculations is highly valuable in the process of designing new materials based on endohedral fullerenes.
    Physical Chemistry Chemical Physics 03/2011; 13(9):3585-603. · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The [4 + 2] cycloaddition of o-quinodimethanes, generated in situ from the sultine 4,5-benzo-3,6-dihydro-1,2-oxathiin 2-oxide and its derivative, to La metal-encapsulated fullerenes, La2@C80 or La@C82, afforded the novel derivatives of endohedral metallofullerenes (3a,b, 4a,b and 5b). Molecular structures of the resulting compounds were elucidated using spectroscopic methods such as MALDI-TOF mass, optical absorption, and NMR spectroscopy. The [4 + 2] adducts of La2@C80 (3a,b, and 4a,b) and La@C82 (5b), respectively, retain diamagnetic and paramagnetic properties, as confirmed by EPR spectroscopy. Dynamic NMR measurements of 4a at various temperatures demonstrated the boat-to-boat inversions of the addend. In addition, 5b revealed remarkable thermal stability in comparison with the reported [4 + 2] cycloadduct of pentamethylcyclopentadiene and La@C82 (6). These findings demonstrate the utility of sultines to afford thermodynamically stable endohedral metallofullerene derivatives for the use in material science.
    Beilstein Journal of Organic Chemistry 01/2014; 10:714-21. · 2.80 Impact Factor