Article

Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors.

The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK.
EMBO Molecular Medicine (Impact Factor: 7.8). 09/2009; 1(6-7):315-22. DOI: 10.1002/emmm.200900041
Source: PubMed

ABSTRACT The tumour suppressor gene, phosphatase and tensin homolog (PTEN), is one of the most commonly mutated genes in human cancers. Recent evidence suggests that PTEN is important for the maintenance of genome stability. Here, we show that PTEN deficiency causes a homologous recombination (HR) defect in human tumour cells. The HR deficiency caused by PTEN deficiency, sensitizes tumour cells to potent inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP), both in vitro and in vivo. PARP inhibitors are now showing considerable promise in the clinic, specifically in patients with mutations in either of the breast cancer susceptibility genes BRCA1 or BRCA2. The data we present here now suggests that the clinical assessment of PARP inhibitors should be extended beyond those with BRCA mutations to a larger group of patients with PTEN mutant tumours.

1 Bookmark
 · 
105 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PTEN inactivation is the most frequent genetic aberration in endometrial cancer. One of the phosphatase-independent roles of PTEN is associated with homologous recombination (HR) in nucleus. Poly (ADP-ribose) polymerase (PARP) plays key roles in the repair of DNA single-strand breaks, and a PARP inhibitor induces synthetic lethality in cancer cells with HR deficiency. We examined the anti-tumor activity of olaparib, a PARP inhibitor, and its correlation between the sensitivity and status of PTEN in endometrial cancer cell lines. The response to olaparib was evaluated using a clonogenic assay with SF50 values (concentration to inhibit cell survival to 50%) in 16 endometrial cancer cell lines. The effects of PTEN on the sensitivity to olaparib and ionizing radiation (IR) exposure were compared between parental HEC-6 (PTEN-null) and HEC-6 PTEN + (stably expressing wild-type PTEN) cells by clonogenic assay, foci formation of RAD51 and gammaH2AX, and induction of cleaved PARP. The effects of siRNA to PTEN were analyzed in cells with wild-type PTEN. The SF50 values were 100 nM or less in four (25%: sensitive) cell lines; whereas, SF50 values were 1,000 nM or more in four (25%: resistant) cell lines. PTEN mutations were not associated with sensitivity to olaparib (Mutant [n = 12]: 746 +/- 838 nM; Wild-type [n = 4]: 215 +/- 85 nM, p = 0.26 by Student's t test). RAD51 expression was observed broadly and was not associated with PTEN status in the 16 cell lines. The number of colonies in the clonogenic assay, the foci formation of RAD51 and gammaH2AX, and the induction of apoptosis were not affected by PTEN introduction in the HEC-6 PTEN + cells. The expression level of nuclear PTEN was not elevated within 24 h following IR in the HEC-6-PTEN + cells. In addition, knocking down PTEN by siRNA did not alter the sensitivity to olaparib in 2 cell lines with wild-type PTEN. Our results suggest that olaparib, a PARP inhibitor, is effective on certain endometrial cancer cell lines. Inactivation of PTEN might not affect the DNA repair function. Predictive biomarkers are warranted to utilize olaparib in endometrial cancer.
    BMC Cancer 03/2014; 14(1):179. · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent phase I studies have reported single-agent activities of poly (ADP-ribose) polymerase (PARP) inhibitor in sporadic and in BRCA-mutant prostate cancers. Two of the most common genetic alterations in prostate cancer, ETS gene rearrangement and loss of PTEN, have been linked to increased sensitivity to PARP inhibitor in preclinical models. Emerging evidence also suggests that PARP1 plays an important role in mediating the transcriptional activities of androgen receptor (AR) and ETS gene rearrangement. In this article, the preclinical work and early-phase clinical trials in developing PARP inhibitor-based therapy as a new treatment paradigm for metastatic prostate cancer are reviewed.
    Asian Journal of Andrology 02/2014; · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphatase and tensin homolog (PTEN) loss is associated with genomic instability. APE1 is a key player in DNA base excision repair (BER) and an emerging drug target in cancer. We have developed small molecule inhibitors against APE1 repair nuclease activity. In the current study we explored a synthetic lethal relationship between PTEN and APE1 in melanoma. Clinicopathological significance of PTEN mRNA and APE1 mRNA expression was investigated in 191 human melanomas. Preclinically, PTEN-deficient BRAF-mutated (UACC62, HT144, and SKMel28), PTEN-proficient BRAF-wildtype (MeWo), and doxycycline-inducible PTEN-knockout BRAF-wildtype MeWo melanoma cells were DNA repair expression profiled and investigated for synthetic lethality using a panel of four prototypical APE1 inhibitors. In human tumours, low PTEN mRNA and high APE1 mRNA was significantly associated with reduced relapse free and overall survival. Pre-clinically, compared to PTEN-proficient cells, PTEN-deficient cells displayed impaired expression of genes involved in DNA double strand break (DSB) repair. Synthetic lethality in PTEN-deficient cells was evidenced by increased sensitivity, accumulation of DSBs and induction of apoptosis following treatment with APE1 inhibitors. We conclude that PTEN deficiency is not only a promising biomarker in melanoma, but can also be targeted by a synthetic lethality strategy using inhibitors of BER, such as those targeting APE1.
    Oncotarget 04/2014; · 6.64 Impact Factor

Full-text (2 Sources)

View
76 Downloads
Available from
May 30, 2014