A clash of old and new scientific concepts in toxicity, with important implications for public health.

Environmental Health Sciences, Charlottesville, Virginia 22902, USA.
Environmental Health Perspectives (Impact Factor: 7.26). 11/2009; 117(11):1652-5. DOI: 10.1289/ehp.0900887
Source: PubMed

ABSTRACT A core assumption of current toxicologic procedures used to establish health standards for chemical exposures is that testing the safety of chemicals at high doses can be used to predict the effects of low-dose exposures, such as those common in the general population. This assumption is based on the precept that "the dose makes the poison": higher doses will cause greater effects.
We challenge the validity of assuming that high-dose testing can be used to predict low-dose effects for contaminants that behave like hormones. We review data from endocrinology and toxicology that falsify this assumption and summarize current mechanistic understanding of how low doses can lead to effects unpredictable from high-dose experiments.
Falsification of this assumption raises profound issues for regulatory toxicology. Many exposure standards are based on this assumption. Rejecting the assumption will require that these standards be reevaluated and that procedures employed to set health standards be changed. The consequences of these changes may be significant for public health because of the range of health conditions now plausibly linked to exposure to endocrine-disrupting contaminants.
We recommend that procedures to establish acceptable exposure levels for endocrine-disrupting compounds incorporate the inability for high-dose tests to predict low-dose results. Setting acceptable levels of exposure must include testing for health consequences at prevalent levels of human exposure, not extrapolations from the effects observed in high-dose experiments. Scientists trained in endocrinology must be engaged systematically in standard setting for endocrine-disrupting compounds.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to endocrine disruptors (EDs) during early development might lead to adverse health outcomes later in life. Tributyltin (TBT), a proven ED, is widely used in consumer goods and industrial products. Herein we demonstrate the effects of low doses of tributyltin chloride (TBTCl) on reproduction of male KM mice. Pregnant mice were administered by gavage with 0, 1, 10, or 100 μg TBTCl/kg body weight/day from day 6 of pregnancy through the period of lactation. TBTCl dramatically decreased sperm counts and motility on postnatal days (PNDs) 49 and 152. Meanwhile, a significant increase in sperm abnormality was observed in exposed mice on PND 49, but comparable to that in the control on PND 152. The histopathological analysis of testes of treated animals showed a dose-dependent increase in sloughing of germ cells in seminiferous tubules. Mice treated with 10 μg TBTCl/kg exhibited decreased intratesticular 17β-estradiol (E2) levels on PND 49, and then followed by an obvious recovery on PND 152. While, no significant differences in serum E2, testosterone (T) levels and intratesticular T levels were detectable between control and TBTCl-exposed offspring at the sacrifice. These results suggest that perinatal TBTCl exposure is implicated in causing long lasting alterations in male reproductive system and these changes may persist far into adulthood. © 2013 Wiley Periodicals, Inc. Environ Toxicol, 2013.
    Environmental Toxicology 08/2013; · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For years, scientists from various disciplines have studied the effects of endocrine disrupting chemicals (EDCs) on the health and wellbeing of humans and wildlife. Some studies have specifically focused on the effects of low doses, i.e. those in the range that are thought to be safe for humans and/or animals. Others have focused on the existence of non-monotonic dose-response curves. These concepts challenge the way that chemical risk assessment is performed for EDCs. Continued discussions have clarified exactly what controversies and challenges remain. We address several of these issues, including why the study and regulation of EDCs should incorporate endocrine principles; what level of consensus there is for low dose effects; challenges to our understanding of non-monotonicity; and whether EDCs have been demonstrated to produce adverse effects. This discussion should result in a better understanding of these issues, and allow for additional dialogue on their impact on risk assessment.
    Reproductive Toxicology 02/2013; · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A World War II defense site at Northway, Alaska, was remediated in the 1990s, leaving complex questions regarding historic exposures to toxic waste. This article describes the context, methods, limitations and findings of the Northway Wild Food and Health Project (NWFHP). The NWFHP comprised 2 pilot studies: the Northway Wild Food Study (NWFS), which investigated contaminants in locally prioritized traditional foods over time, and the Northway Health Study (NHS), which investigated locally suspected links between resource uses and health problems. This research employed mixed methods. The NWFS reviewed remedial documents and existing data. The NHS collected household information regarding resource uses and health conditions by questionnaire and interview. NHS data represent general (yes or no) personal knowledge that was often second hand. Retrospective cohort comparisons were made of the reported prevalence of 7 general health problems between groups based on their reported (yes or no) consumption of particular resources, for 3 data sets (existing, historic and combined) with a two-tailed Fisher's Exact Test in SAS (n=325 individuals in 83 households, 24 of which no longer exist). The NWFS identified historic pathways of exposure to petroleum, pesticides, herbicides, chlorinated byproducts of disinfection and lead from resources that were consumed more frequently decades ago and are not retrospectively quantifiable. The NHS found complex patterns of association between reported resource uses and cancer and thyroid-, reproductive-, metabolic- and cardiac problems. Lack of detail regarding medical conditions, undocumented histories of exposure, time lapsed since the release of pollution and changes to health and health care over the same period make this exploratory research. Rather than demonstrate causation, these results document the legitimacy of local suspicions and warrant additional investigation. This article presents our findings, with discussion of limitations related to study design and limitations that are inherent to such research.
    International journal of circumpolar health. 01/2013; 72.

Full-text (3 Sources)

Available from
Nov 4, 2014