Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling.

Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
Journal of Biological Chemistry (Impact Factor: 4.65). 03/2010; 285(10):7805-17. DOI:10.1074/jbc.M109.091173
Source: PubMed

ABSTRACT The chemokine receptor CXCR4 is a widely expressed G protein-coupled receptor that has been implicated in a number of diseases including human immunodeficiency virus, cancer, and WHIM syndrome, with the latter two involving dysregulation of CXCR4 signaling. To better understand the role of phosphorylation in regulating CXCR4 signaling, tandem mass spectrometry and phospho-specific antibodies were used to identify sites of agonist-promoted phosphorylation. These studies demonstrated that Ser-321, Ser-324, Ser-325, Ser-330, Ser-339, and two sites between Ser-346 and Ser-352 were phosphorylated in HEK293 cells. We show that Ser-324/5 was rapidly phosphorylated by protein kinase C and G protein-coupled receptor kinase 6 (GRK6) upon CXCL12 treatment, whereas Ser-339 was specifically and rapidly phosphorylated by GRK6. Ser-330 was also phosphorylated by GRK6, albeit with slower kinetics. Similar results were observed in human astroglia cells, where endogenous CXCR4 was rapidly phosphorylated on Ser-324/5 by protein kinase C after CXCL12 treatment, whereas Ser-330 was slowly phosphorylated. Analysis of CXCR4 signaling in HEK293 cells revealed that calcium mobilization was primarily negatively regulated by GRK2, GRK6, and arrestin3, whereas GRK3, GRK6, and arrestin2 played a primary role in positively regulating ERK1/2 activation. In contrast, GRK2 appeared to play a negative role in ERK1/2 activation. Finally, we show that arrestin association with CXCR4 is primarily driven by the phosphorylation of far C-terminal residues on the receptor. These studies reveal that site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases resulting in both positive and negative modulation of CXCR4 signaling.

0 0
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Germinal center (GC) B cells cycle between the dark zone (DZ) and light zone (LZ) during antibody affinity maturation. Whether this movement is necessary for GC function has not been tested. Here we show that CXCR4-deficient GC B cells, which are restricted to the LZ, are gradually outcompeted by WT cells indicating an essential role for DZ access. Remarkably, the transition between DZ centroblast and LZ centrocyte phenotypes occurred independently of positioning. However, CXCR4-deficient cells carried fewer mutations and were overrepresented in the CD73(+) memory compartment. These findings are consistent with a model where GC B cells change from DZ to LZ phenotype according to a timed cellular program but suggest that spatial separation of DZ cells facilitates more effective rounds of mutation and selection. Finally, we identify a network of DZ CXCL12-expressing reticular cells that likely support DZ functions.
    Immunity 10/2013; · 19.80 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Signaling bias refers to G protein-coupled receptor ligand ability to preferentially activate one type of signal over another. Bias to evoke signaling as opposed to sequestration has been proposed as a predictor of opioid ligand potential for generating tolerance. Here we measured whether delta opioid receptor agonists preferentially inhibited cyclase activity over internalization in HEK cells. Efficacy (τ) and affinity (KA) values were estimated from functional data and bias was calculated from efficiency coefficients (log τ/KA). This approach better represented the data as compared to alternative methods that estimate bias exclusively from τ values. Log (τ/KA) coefficients indicated that SNC-80 and UFP-512 promoted cyclase inhibition more efficiently than DOR internalization as compared to DPDPE (bias factor for SNC-80: 50 and for UFP-512: 132). Molecular determinants of internalization were different in HEK293 cells and neurons with βarrs contributing to internalization in both cell types, while PKC and GRK2 activities were only involved in neurons. Rank orders of ligand ability to engage different internalization mechanisms in neurons were compared to rank order of E max values for cyclase assays in HEK cells. Comparison revealed a significant reversal in rank order for cyclase E max values and βarr-dependent internalization in neurons, indicating that these responses were ligand-specific. Despite this evidence, and because kinases involved in internalization were not the same across cellular backgrounds, it is not possible to assert if the magnitude and nature of bias revealed by rank orders of maximal responses is the same as the one measured in HEK cells.
    Cellular and Molecular Life Sciences CMLS 09/2013; · 5.62 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Follicle-stimulating hormone (FSH) plays a crucial role in the control of reproduction by specifically binding to and activating a membrane receptor (FSHR) that belongs to the G protein-coupled receptor (GPCR) family. Similar to all GPCRs, FSHR activation mechanisms have generally been viewed as a two-state process connecting a unique FSH-bound active receptor to the Gs/cAMP pathway. Over the last decade, paralleling the breakthroughs that were made in the GPCR field, our understanding of FSH actions at the molecular level has dramatically changed. There are numerous facts indicating that the active FSHR is connected to a complex signalling network rather than the sole Gs/cAMP pathway. Consistently, the FSHR probably exists in equilibrium between multiple conformers, a subset of them being stabilized upon ligand binding. Importantly, the nature of the stabilized conformers of the receptor directly depends on the chemical structure of the ligand bound. This implies that it is possible to selectively control the intracellular signalling pathways activated by using biased ligands. Such biased ligands can be of different nature: small chemical molecules, glycosylation variants of the hormone or antibody/hormone complexes. Likewise, mutations or polymorphisms affecting the FSHR can also lead to stabilization of preferential conformers, hence to selective modulation of signalling pathways. These emerging notions offer a new conceptual framework that could potentially lead to the development of more specific drugs while also improving the way FSHR mutants/variants are functionally characterized.
    Molecular and Cellular Endocrinology 10/2013; · 4.04 Impact Factor