Article

Sterol affinity for bilayer membranes is affected by their ceramide content and the ceramide chain length.

Abo Akademi University, Department of biochemistry and pharmacy, Tykistökatu 6A, 20520 Turku, Finland.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 05/2010; 1798(5):1008-13. DOI: 10.1016/j.bbamem.2009.12.025
Source: PubMed

ABSTRACT It is known that ceramides can influence the lateral organization in biological membranes. In particular ceramides have been shown to alter the composition of cholesterol and sphingolipid enriched nanoscopic domains, by displacing cholesterol, and forming gel phase domains with sphingomyelin. Here we have investigated how the bilayer content of ceramides and their chain length influence sterol partitioning into the membranes. The effect of ceramides with saturated chains ranging from 4 to 24 carbons in length was investigated. In addition, unsaturated 18:1- and 24:1-ceramides were also examined. The sterol partitioning into bilayer membranes was studied by measuring the distribution of cholestatrienol, a fluorescent cholesterol analogue, between methyl-beta-cyclodextrin and large unilamellar vesicle with defined lipid composition. Up to 15 mol% ceramide was added to bilayers composed of DOPC:PSM:cholesterol (3:1:1), and the effect on sterol partitioning was measured. Both at 23 and 37 degrees C addition of ceramide affected the sterol partitioning in a chain length dependent manner, so that the ceramides with intermediate chain lengths were the most effective in reducing sterol partitioning into the membranes. At 23 degrees C the 18:1-ceramide was not as effective at inhibiting sterol partitioning into the vesicles as its saturated equivalent, but at 37 degrees C the additional double bond had no effect. The longer 24:1-ceramide behaved as 24:0-ceramide at both temperatures. In conclusion, this work shows how the distribution of sterols within sphingomyelin-containing membranes is affected by the acyl chain composition in ceramides. The overall membrane partitioning measured in this study reflects the differential partitioning of sterol into ordered domains where ceramides compete with the sterol for association with sphingomyelin.

0 Bookmarks
 · 
145 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Among non-invasive cell delivery strategies, cell-penetrating peptide (CPP) vectors represent interesting new tools. To get fundamental knowledge about the still debated internalisation mechanisms of these peptides, we modified the membrane content of cells, typically by hydrolysis of sphingomyelin or depletion of cholesterol from the membrane outer leaflet. We quantified and visualised the effect of these viable cell surface treatments on the internalisation efficiency of different CPPs, among which the most studied Tat, R9, penetratin and analogues, that all carry the N-terminal biotin-Gly4 tag cargo. Under these cell membrane treatments, only penetratin and R6W3 underwent a massive glycosaminoglycan (GAG)-dependent entry in cells. Internalisation of the other peptides was only slightly increased, similarly in the absence or the presence of GAGs for R9, and only in the presence of GAGs for Tat and R6L3. Ceramide formation (or cholesterol depletion) is known to lead to the reorganisation of membrane lipid domains into larger platforms, which can serve as a trap and cluster receptors. These results show that GAG clustering, enhanced by formation of ceramide, is efficiently exploited by penetratin and R6W3, which contains Trp residues in their sequence but not Tat, R9 and R6L3. Hence, these data shed new lights on the differences in the internalisation mechanism and pathway of these peptides that are widely used in delivery of cargo molecules.
    Cellular and Molecular Life Sciences CMLS 08/2014; · 5.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cholesterol (chol)-lipid interactions are thought to play an intrinsic role in determining lateral organization within cellular membranes. Steric compatibility of the rigid steroid moiety for ordered saturated chains contributes to the high affinity that holds chol and sphingomyelin together in lipid rafts whereas, conversely, poor affinity of the sterol for highly disordered polyunsaturated fatty acids (PUFAs) is hypothesized to drive the formation of PUFA-containing phospholipid domains depleted in chol. Here, we describe a novel method using electron paramagnetic resonance (EPR) to measure the relative affinity of chol for different phospholipids. We monitor the partitioning of 3β-doxyl-5α-cholestane (chlstn), a spin-labeled analog of chol, between large unilamellar vesicles (LUVs) and cyclodextrin (mβCD) through analysis of EPR spectra. Because the shape of the EPR spectrum for chlstn is sensitive to the very different tumbling rates of the two environments, the ratio of the population of chlstn in LUVs and mβCD can be determined directly from spectra. Partition coefficients ([Formula: see text]) between lipids derived from our results for chlstn agree with values obtained for chol and confirm that decreased affinity for the sterol accompanies increasing acyl chain unsaturation. The virtue of this EPR method is that it provides a measure of chol binding that is quick, employs a commercially available probe and avoids the necessity for physical separation of LUVs and mβCD.
    Journal of Membrane Biology 08/2013; · 2.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ceramides are involved in a variety of cellular processes and in disease. Their biological functions are thought to depend on ceramides’ unique biophysical properties, which promote strong alterations on cell membrane properties and consequent triggering of signaling events. Over the last decades, efforts were made to understand the impact of ceramide on membrane biophysical features. Several studies, performed in a multitude of membrane models, address the ceramides’ specific interactions, the effect of their acyl chain structure and the influence of membrane lipid composition and properties on ceramide biophysical outcome. In this review, a rationale for the multiple and complex changes promoted by ceramide is provided, highlighting, on a comprehensive and critical manner, the interactions between ceramides and specific lipids and/or lipid phases. Focus is also given to the interplay between ceramide and cholesterol, particularly in lipid raft-mimicking mixtures, an issue of intense debate due to the urgent need to understand the biophysical impact of ceramide formation in models resembling the cell membrane. The implications of ceramide-induced biophysical changes on lipid-protein interactions and cell signaling are also discussed, together with the emerging evidence for the existence of ceramide-gel like domains in cellular membranes.
    Progress in lipid research 01/2014; · 10.67 Impact Factor

Full-text

Download
37 Downloads
Available from