Conference Paper

Measurements of effective thermal conductivity for advanced interconnect structures with various composite low-K dielectrics

IBM Microeletronics Div., Essex Junction, VT, USA
DOI: 10.1109/RELPHY.2004.1315303 Conference: Reliability Physics Symposium Proceedings, 2004. 42nd Annual. 2004 IEEE International
Source: IEEE Xplore


Accurate specification of design groundrules for interconnect systems requires knowledge of the thermal behavior of the systems. A key parameter that characterizes the thermal behavior is the thermal conductivity of the inter-level dielectric (ILD). In practical VLSI applications, the metal interconnects are fully embedded in a stacked, composite ILD media, which presents difficult challenges for the accurate determination of thermal conductivity. In this paper, we propose the concept of an "effective thermal conductivity" to model such complicated, composite media, and introduce a simple methodology to accurately measure effective and bulk thermal conductivities of various thin dielectric layers in integrated circuits. We present measured effective conductivities of several composite media, including various Cu/low-k dielectric configurations such as Cu/SiCOH, Cu/SiLK®, Cu/fluorinated silicate glass (FSG), and a hybrid stack with Cu lines in SiLK® and Cu vias in un-doped silicate glass (USG). Measurements were recorded in the temperature range from 30°C to 120°C using a unique combination of fully embedded Cu lines as heater/thermometers, wafer-level temperature vs. power (TVP) measurements, and the Harmon-Gill (H-G) quasi-analytical heat conduction model. The thermal conductivities of all the films studied here were observed to increase with rising substrate temperature.

22 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: When measuring the best linear approximation of systems suffering from nonlinear distortions a specific class of periodic multiharmonic signals is normally used. These are signals with uniformly distributed random phases, termed random phase multisines. In this paper, it is shown that measurements of the best linear approximation of nonlinear systems can also be obtained by using a special type of low crest factor multisines. These signals are compared to random phase multisines and their properties are analysed in detail.
    Instrumentation and Measurement Technology Conference, 2002. IMTC/2002. Proceedings of the 19th IEEE; 02/2002
  • [Show abstract] [Hide abstract]
    ABSTRACT: As dimensions continue to shrink and device densities increase, power and heat dissipation become an ever-increasing challenge. In this work, we investigate heat flow ramifications for a variety of very simple patterns. We start by describing the use of a finite element method (FEM) tool. This includes a brief description of the modeling procedure. The model results, for a given set of boundary conditions, are then compared to the physical measurements for that structure. Excellent agreement is demonstrated, thus calibrating the model. We then extend this model to structures for which we have no physical measurements. As importantly, we extend this model to structures and patterns that may be desirable for the next generation.
    Integrated Reliability Workshop Final Report, 2004 IEEE International; 11/2004
  • [Show abstract] [Hide abstract]
    ABSTRACT: The combination of low k dielectric material application and aggressive scaling in advanced interconnects creates new challenges for thermal and electromigration solutions. The complexity and difficulty are discussed for modeling and evaluating thermal and EM interactions in circuit designs. A few examples are given to show quantitatively the impact of different dielectric materials on maximum allowed current density and scaling in Cu lines.
    Integrated Reliability Workshop Final Report, 2004 IEEE International; 11/2004
Show more

Similar Publications