The carboxy-terminal fragment of α1A calcium channel preferentially aggregates in the cytoplasm of human spinocerebellar ataxia type 6 Purkinje cells

Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8519, Japan.
Acta Neuropathologica (Impact Factor: 9.78). 04/2010; 119(4):447-64. DOI: 10.1007/s00401-009-0630-0
Source: PubMed

ABSTRACT Spinocerebellar ataxia type 6 (SCA6) is an autosomal dominant neurodegenerative disease caused by a small polyglutamine (polyQ) expansion (control: 4-20Q; SCA6: 20-33Q) in the carboxyl(C)-terminal cytoplasmic domain of the alpha(1A) voltage-dependent calcium channel (Ca(v)2.1). Although a 75-85-kDa Ca(v)2.1 C-terminal fragment (CTF) is toxic in cultured cells, its existence in human brains and its role in SCA6 pathogenesis remains unknown. Here, we investigated whether the small polyQ expansion alters the expression pattern and intracellular distribution of Ca(v)2.1 in human SCA6 brains. New antibodies against the Ca(v)2.1 C-terminus were used in immunoblotting and immunohistochemistry. In the cerebella of six control individuals, the CTF was detected in sucrose- and SDS-soluble cytosolic fractions; in the cerebella of two SCA6 patients, it was additionally detected in SDS-insoluble cytosolic and sucrose-soluble nuclear fractions. In contrast, however, the CTF was not detected either in the nuclear fraction or in the SDS-insoluble cytosolic fraction of SCA6 extracerebellar tissues, indicating that the CTF being insoluble in the cytoplasm or mislocalized to the nucleus only in the SCA6 cerebellum. Immunohistochemistry revealed abundant aggregates in cell bodies and dendrites of SCA6 Purkinje cells (seven patients) but not in controls (n = 6). Recombinant CTF with a small polyQ expansion (rCTF-Q28) aggregated in cultured PC12 cells, but neither rCTF-Q13 (normal-length polyQ) nor full-length Ca(v)2.1 with Q28 did. We conclude that SCA6 pathogenesis may be associated with the CTF, normally found in the cytoplasm, being aggregated in the cytoplasm and additionally distributed in the nucleus.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The CACNA1A gene, encoding the voltage-gated calcium channel subunit α1A, is involved in pre- and postsynaptic Ca(2+) signaling, gene expression, and several genetic neurological disorders. We found that CACNA1A coordinates gene expression using a bicistronic mRNA bearing a cryptic internal ribosomal entry site (IRES). The first cistron encodes the well-characterized α1A subunit. The second expresses a transcription factor, α1ACT, which coordinates expression of a program of genes involved in neural and Purkinje cell development. α1ACT also contains the polyglutamine (polyQ) tract that, when expanded, causes spinocerebellar ataxia type 6 (SCA6). When expressed as an independent polypeptide, α1ACT-bearing an expanded polyQ tract-lacks transcription factor function and neurite outgrowth properties, causes cell death in culture, and leads to ataxia and cerebellar atrophy in transgenic mice. Suppression of CACNA1A IRES function in SCA6 may be a potential therapeutic strategy.
    Cell 07/2013; 154(1):118-33. · 31.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurological channelopathies are attributed to aberrant ion channelsaffectingCNS, PNS, cardiac and skeletal muscles.To maintain thehomeostasis of excitable tissues; functional ion channels are necessary to rely electrical signalswhereas any malfunctioning serves as an intrinsic factor todevelop neurological channelopathies.Molecular basis of these disease arestudiedbased on genetic and biophysical approaches, e.g. loci positional cloning whereas pathogenesis and bio-behavioralanalysis revealed the dependency ongenetic mutations and inter-current triggering factors.Although, electrophysiological studies revealed the possible mechanisms of diseases but analytical study of ion channels remained unsettled and therefore underlying mechanism in channelopathies is necessary for better clinical application. Herein, we demonstrated (i) structural and functional role of various ion channels(Na+, K+, Ca2+,Cl-), (ii) pathophysiology involved in the onset of their associated channelopathies and (iii) comparative sequence and phylogenetic analysis of diversified sodium, potassium, calcium and chloride ion channel subtypes.
    Journal of Membrane Biology 07/2014; · 2.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nine genetic diseases arise from expansion of CAG repeats in seemingly unrelated genes. They are referred to as polyglutamine (polyQ) diseases due to the presence of elongated glutamine tracts in the corresponding proteins. The pathologic consequences of polyQ expansion include progressive spinal, cerebellar, and neural degeneration. These pathologies are not identical, however, suggesting that disruption of protein-specific functions is crucial to establish and maintain each disease. A closer examination of protein function reveals that several act as regulators of gene expression. Here we examine the roles these proteins play in regulating gene expression, discuss how polyQ expansion may disrupt these functions to cause disease, and speculate on the neural specificity of perturbing ubiquitous gene regulators.
    Current Opinion in Genetics & Development 06/2014; 26:96-104. · 8.57 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014