Preferential translation of Hsp83 in Leishmania requires a thermosensitive polypyrimidine-rich element in the 3′ UTR and involves scanning of the 5′ UTR. RNA

Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
RNA (Impact Factor: 4.94). 02/2010; 16(2):364-74. DOI: 10.1261/rna.1874710
Source: PubMed


Heat shock proteins (HSPs) provide a useful system for studying developmental patterns in the digenetic Leishmania parasites, since their expression is induced in the mammalian life form. Translation regulation plays a key role in control of protein coding genes in trypanosomatids, and is directed exclusively by elements in the 3' untranslated region (UTR). Using sequential deletions of the Leishmania Hsp83 3' UTR (888 nucleotides [nt]), we mapped a region of 150 nt that was required, but not sufficient for preferential translation of a reporter gene at mammalian-like temperatures, suggesting that changes in RNA structure could be involved. An advanced bioinformatics package for prediction of RNA folding (UNAfold) marked the regulatory region on a highly probable structural arm that includes a polypyrimidine tract (PPT). Mutagenesis of this PPT abrogated completely preferential translation of the fused reporter gene. Furthermore, temperature elevation caused the regulatory region to melt more extensively than the same region that lacked the PPT. We propose that at elevated temperatures the regulatory element in the 3' UTR is more accessible to mediators that promote its interaction with the basal translation components at the 5' end during mRNA circularization. Translation initiation of Hsp83 at all temperatures appears to proceed via scanning of the 5' UTR, since a hairpin structure abolishes expression of a fused reporter gene.

Download full-text


Available from: Idan Gabdank, Dec 13, 2013
27 Reads
  • Source
    • "Fine deletions finally identified a regulatory element of 30 nucleotides (positions 312–341), containing a stretch of polypyrimidines. This region was shown to be part of an RNA structure that was predicted with high probability [79], using the UNAfold algorithm [80]. A biophysical evaluation of the mRNA melting curves was performed to examine the role of secondary structures in the regulatory region. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Trypanosomatids are ancient eukaryotic parasites that migrate between insect vectors and mammalian hosts, causing a range of diseases in humans and domestic animals. Trypanosomatids feature a multitude of unusual molecular features, including polycistronic transcription and subsequent processing by trans-splicing and polyadenylation. Regulation of protein coding genes is posttranscriptional and thus, translation regulation is fundamental for activating the developmental program of gene expression. The spliced-leader RNA is attached to all mRNAs. It contains an unusual hypermethylated cap-4 structure in its 5' end. The cap-binding complex, eIF4F, has gone through evolutionary changes in accordance with the requirement to bind cap-4. The eIF4F components in trypanosomatids are highly diverged from their orthologs in higher eukaryotes, and their potential functions are discussed. The cap-binding activity in all eukaryotes is a target for regulation and plays a similar role in trypanosomatids. Recent studies revealed a novel eIF4E-interacting protein, involved in directing stage-specific and stress-induced translation pathways. Translation regulation during stress also follows unusual regulatory cues, as the increased translation of Hsp83 following heat stress is driven by a defined element in the 3' UTR, unlike higher eukaryotes. Overall, the environmental switches experienced by trypanosomatids during their life cycle seem to affect their translational machinery in unique ways.
    Comparative and Functional Genomics 07/2012; 2012(12):813718. DOI:10.1155/2012/813718 · 2.03 Impact Factor
  • Source
    • "Although regulatory sequences have been identified in both 5' and 3' UTRs, most of them have been located in the 3' UTRs [18-23]. For instance, preferential translation of HSP83 in Leishmania requires a thermosensitive polypyrimidine-rich element (PPT) in the 3' UTR [24]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The heat stress suffered by Leishmania sp during its digenetic life-cycle is a key trigger for its stage differentiation. In Leishmania subgenera two classes of HSP70 genes differing in their 3' UTR were described. Although the presence of HSP70-I genes was previously suggested in Leishmania (Viannia) braziliensis, HSP70-II genes had been reluctant to be uncovered. Here, we report the existence of two types of HSP70 genes in L. braziliensis and the genomic organization of the HSP70 locus. RT-PCR experiments were used to map the untranslated regions (UTR) of both types of genes. The 3' UTR-II has a low sequence identity (55-57%) when compared with this region in other Leishmania species. In contrast, the 5' UTR, common to both types of genes, and the 3' UTR-I were found to be highly conserved among all Leishmania species (77-81%). Southern blot assays suggested that L. braziliensis HSP70 gene cluster may contain around 6 tandemly-repeated HSP70-I genes followed by one HSP70-II gene, located at chromosome 28. Northern blot analysis indicated that levels of both types of mRNAs are not affected by heat shock. This study has led to establishing the composition and structure of the HSP70 locus of L. braziliensis, complementing the information available in the GeneDB genome database for this species. L. braziliensis HSP70 gene regulation does not seem to operate by mRNA stabilization as occurs in other Leishmania species.
    Parasites & Vectors 08/2011; 4(1). DOI:10.1186/1756-3305-4-166 · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Large size odd-numbered calixarenes were used for the first time as ionophoric agents for the functionalization of ISFET microsensors and EIS structures through thermal evaporation process. Both calixarenes have shown a nernstian sensitivity over three decades towards only copper (II) activities. Very low selectivity coefficients were observed for K+ and Ca2+ whereas Cd2+ and Pb2+ (less than 10−3) can be considered as interfering ions. Lifetime of around three months for the microsensors were obtained.
    Sensors and Actuators B Chemical 01/2000; 62(1):8-12. DOI:10.1016/S0925-4005(99)00355-X · 4.10 Impact Factor
Show more