Hereditary spastic paraplegia and amyotrophy associated with a novel locus on chromosome 19

Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
Neurogenetics (Impact Factor: 2.88). 07/2010; 11(3):313-8. DOI: 10.1007/s10048-009-0230-0
Source: PubMed

ABSTRACT We identified a family in Mali with two sisters affected by spastic paraplegia. In addition to spasticity and weakness of the lower limbs, the patients had marked atrophy of the distal upper extremities. Homozygosity mapping using single nucleotide polymorphism arrays showed that the sisters shared a region of extended homozygosity at chromosome 19p13.11-q12 that was not shared by controls. These findings indicate a clinically and genetically distinct form of hereditary spastic paraplegia with amyotrophy, designated SPG43.

Download full-text


Available from: Katherine G Meilleur, Sep 25, 2015
22 Reads
  • Source
    • "We previously described a consanguineous Malian family with recessive HSP in which two sisters presented at the age of 7 and 12 years with gait difficulty, spasticity, and peripheral neuropathy, and shared a region of extended homozygosity on chromosome 19 [Meilleur et al., 2010]. Five years after the initial examination, the older patient had severe atrophy and decreased sensation in the arms and legs, and reduced-to-absent reflexes, but no cognitive decline, facial and bulbar weakness, or vision loss. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We report here the genetic basis for a form of progressive hereditary spastic paraplegia (SPG43) previously described in two Malian sisters. Exome sequencing revealed a homozygous missense variant (c.187G>C; p.Ala63Pro) in C19orf12, a gene recently implicated in neurodegeneration with brain iron accumulation (NBIA). The same mutation was subsequently also found in a Brazilian family with features of NBIA, and we identified another NBIA patient with a three-nucleotide deletion (c.197_199del; p.Gly66del). Haplotype analysis revealed that the p.Ala163Pro mutations have a common origin, but MRI scans showed no brain iron deposition in the Malian SPG43 subjects. Heterologous expression of these SPG43 and NBIA variants resulted in similar alterations in the subcellular distribution of C19orf12. The SPG43 and NBIA variants reported here as well as the most common C19orf12 missense mutation reported in NBIA patients are found within a highly-conserved, extended hydrophobic domain in C19orf12, underscoring the functional importance of this domain.
    Human Mutation 07/2013; 34(10). DOI:10.1002/humu.22378 · 5.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary spastic paraplegia (SPG) is a clinically and genetically heterogeneous group of neurodegenerative disorders that are clinically characterised by progressive spasticity and weakness of the lower-limbs (pure SPG) and, majoritorian, additional more extensive neurological or non-neurological manifestations (complex or complicated SPG). Pure SPG is characterised by progressive spasticity and weakness of the lower-limbs, and occasionally sensory disturbances or bladder dysfunction. Complex SPGs additionally include cognitive impairment, dementia, epilepsy, extrapyramidal disturbances, cerebellar involvement, retinopathy, optic atrophy, deafness, polyneuropathy, or skin lesions in the absence of coexisting disorders. Nineteen SPGs follow an autosomal-dominant (AD-SPG), 27 an autosomal-recessive (AR-SPG), 5 X-linked (XL-SPG), and one a maternal trait of inheritance. SPGs are due to mutations in genes encoding for proteins involved in the maintenance of corticospinal tract neurons. Among the AD-SPGs, 40-45% of patients carry mutations in the SPAST-gene (SPG4) and 10% in the ATL1-gene (SPG3), while the other 9 genes are more rarely involved (NIPA1 (SPG6), KIAA0196 (SPG8), KIF5A (SPG10), RNT2 (SPG12), SPGD1 (SPG13), BSCL2 (SPG17), REEP1 (SPG31), ZFYVE27 (SPG33, debated), and SLC33A1 (SPG42, debated)). Among the AR-SPGs, ~20% of the patients carry mutations in the KIAA1840 (SPG11) gene whereas the 15 other genes are rarely mutated and account for SPGs in single families yet (CYP7B1 (SPG5), SPG7 (SPG7), ZFYVE26 (SPG15), ERLIN2 (SPG18), SPG20 (SPG20), ACP33 (SPG21), KIF1A (SPG30), FA2H (SPG35), NTE (SPG39), GJA12/GJC2 (SPG44), KIAA0415 (SPG48) and 4 genes encoding for the AP4-complex (SPG47)). Among the XL-SPGs, 3 causative genes have been identified (L1CAM (SPG1), PLP1 (SPG2), and SLC16A2 (SPG22)). The diagnosis of SPGs is based on clinical, instrumental and genetic investigations. Treatment is exclusively symptomatic.
    Journal of the neurological sciences 05/2012; 318(1-2):1-18. DOI:10.1016/j.jns.2012.03.025 · 2.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary spastic paraplegias (HSP) are a heterogeneous group of neurological disorders. Insidiously progressive spastic weakness of the lower extremities is the common criterion in all forms described. Clinically, HSP is differentiated into pure (uncomplicated) and complex (complicated) forms. While pure HSP is predominantly characterized by signs and symptoms of pyramidal tract dysfunction, additional neurological and non-neurological symptoms occur in complicated forms. Autosomal dominant, autosomal recessive, and X-linked modes of inheritance have been described and at least 48 subtypes, termed SPG1-48, have been genetically defined. Although in autosomal dominant HSP families 50-60% of etiologies can be established by genetic testing, genotype predictions based on the phenotype are limited. In order to realize high-throughput genotyping for dominant HSP, we designed a resequencing microarray for six autosomal dominant genes on the Affymetrix CustomSEQ array platform. For validation purposes, 10 previously Sanger sequenced patients with autosomal dominant HSP and 40 positive controls with known mutations in ATL1, SPAST, NIPA1, KIF5A, and BSCL2 (32 base exchanges, eight small indels) were resequenced on this array. DNA samples of 45 additional patients with AD spastic paraplegia were included in the study. With two different sequencing analysis software modules (GSEQ, SeqC), all missense/nonsense mutations in the positive controls were identified while indels had a detection rate of only 50%. In total, 244 common synonymous single-nucleotide polymorphisms (SNPs) annotated in dbSNP (build 132) corresponding to 22 distinct sequence variations were found in the 53 analyzed patients. Among the 22 different sequence variations (SPAST n = 15, ATL1 n = 3, KIF5A n = 2, HSPD1 n = 1, BSCL2 n = 1, NIPA1 n = 0), 12 were rare variants that have not been previously described and whose clinical significance is unknown. In SPAST-negative cases, a genetic diagnosis could be established in 11% by resequencing. Resequencing microarray technology can therefore efficiently be used to study genotypes and mutations in large patient cohorts.
    Neurogenetics 05/2012; 13(3):215-27. DOI:10.1007/s10048-012-0329-6 · 2.88 Impact Factor
Show more