Differential transcriptional responses to interferon-alpha and interferon-gamma in primary human hepatocytes.

Department of Medicine, Stanford University School of Medicine , Stanford, California, USA.
Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research (Impact Factor: 1.63). 05/2010; 30(5):311-20. DOI: 10.1089/jir.2009.0082
Source: PubMed

ABSTRACT Interferon (IFN) plays a central role in the innate and adaptive antiviral immune responses. While IFN-alpha is currently approved for treating chronic hepatitis B and hepatitis C, in limited studies, IFN-gamma has not been shown to be effective for chronic hepatitis B or C. To identify the potential mechanism underlying the differential antiviral effects of IFN-alpha and IFN-gamma, we used cDNA microarray to profile the global transcriptional response to IFN-alpha and IFN-gamma in primary human hepatocytes, the target cell population of hepatitis viruses. Our results reveal distinct patterns of gene expression induced by these 2 cytokines. Overall, IFN-alpha induces more genes than IFN-gamma at the transcriptional level. Distinct sets of genes were induced by IFN-alpha and IFN-gamma with limited overlaps. IFN-alpha induces gene transcription at an early time point (6 h) but not at a later time point (18 h), while the effects of IFN-gamma are more prominent at 18 h than at 6 h, suggesting a delayed transcriptional response to IFN-gamma in the hepatocytes. These findings indicate differential actions of IFN-alpha and IFN-gamma in the context of therapeutic intervention for chronic viral infections in the liver.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several genome-wide association studies (GWAS) have identified a genetic polymorphism associated with the gene locus for interleukin 28B (IL28B), a type III interferon (IFN), as a major predictor of clinical outcome in hepatitis C. Antiviral effects of the type III IFN family have previously been shown against several viruses, including hepatitis C virus (HCV), and resemble the function of type I IFN including utilization of the intracellular JAK-STAT pathway. Effects unique to IL28B that would distinguish it from IFN-α are not well defined. By analyzing the transcriptomes of primary human hepatocytes (PHH) treated with IFN-α or IL28B, we sought to identify functional differences between IFN-α and IL28B to better understand the roles of these cytokines in the innate immune response. Although our data did not reveal distinct gene signatures, we detected striking kinetic differences between IFN-α and IL28B stimulation for interferon stimulated genes (ISGs). While gene induction was rapid and peaked at 8 h of stimulation with IFN-α in PHH, IL28B produced a slower, but more sustained increase in gene expression. We confirmed these findings in the human hepatoma cell line Huh7.5.1. Interestingly, in HCV infected cells, the rapid response after stimulation with IFN-α was blunted, and the induction pattern resembled that caused by IL28B. In conclusion, we describe the kinetics of gene induction as being fundamentally different for stimulations with either IFN-α or IL28B in hepatocytes suggesting distinct roles of these cytokines within the immune response. Furthermore, we demonstrate that the observed differences are substantially altered by infection with the hepatitis C virus. (Hepatology 2013;).
    Hepatology 08/2013; 59(4). · 11.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study compared the ability of IFN-α and IFN-λ to induce signal transduction and gene expression in primary human hepatocytes, PBLs, and monocytes. IFN-α drug products are widely used to treat chronic HCV infection; however, IFN-α therapy often induces hematologic toxicities as a result of the broad expression of IFNARs on many cell types, including most leukocytes. rIFN-λ1 is currently being tested as a potential alternative to IFN-α for treating chronic HCV. Although IFN-λ has been shown to be active on hepatoma cell lines, such as HepG2 and Huh-7, its ability to induce responses in primary human hepatocytes or leukocytes has not been examined. We found that IFN-λ induces activation of Jak/STAT signaling in mouse and human hepatocytes, and the ability of IFN-λ to induce STAT activation correlates with induction of numerous ISGs. Although the magnitude of ISG expression induced by IFN-λ in hepatocytes was generally lower than that induced by IFN-α, the repertoire of regulated genes was quite similar. Our findings demonstrate that although IFN-α and IFN-λ signal through distinct receptors, they induce expression of a common set of ISGs in hepatocytes. However, unlike IFN-α, IFN-λ did not induce STAT activation or ISG expression by purified lymphocytes or monocytes. This important functional difference may provide a clinical advantage for IFN-λ as a treatment for chronic HCV infection, as it is less likely to induce the leukopenias that are often associated with IFN-α therapy.
    Journal of leukocyte biology 12/2012; · 4.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND & AIMS: Hepatitis C virus (HCV) infection is a leading cause of end-stage liver disease. Interferon (IFN)-α is an important component of anti-HCV therapy; it upregulates transcription of IFN-stimulated genes (ISGs)-many of which have been investigated for their anti-viral effects. However, all the genes required for the anti-viral function of IFN-α (IFN effector genes, IEGs) are not known. IEGs include not only ISGs, but other non-transcriptionally induced genes that are required for the anti-viral effect of IFN-α. In contrast to candidate approaches based on analyses mRNA expression, identification of IEGs requires a broad functional approach. METHODS: We performed an unbiased genome-wide small-interfering (si)RNA screen to identify IEGs that inhibit HCV. Huh7.5.1 hepatoma cells were transfected with siRNAs, incubated with IFN-α, and then infected with JFH1 HCV. Cells were stained using HCV core antibody, imaged, and analyzed to determine the percent infection. Candidate IEGs detected in the screen were validated and analyzed further. RESULTS: The screen identified 120 previously unreported IEGs. From these, we more fully evaluated 9 (ALG10, BCHE, DPP4, GCKR, GUCY1B3, MYST1, PPP3CB, PDIP1, SLC27A2) and demonstrated that they enabled IFN-α-mediated suppression of HCV at multiple steps of its lifecycle. Expression of these genes had more potent effects against flaviviridae, because a subset were required for IFN-α to suppress dengue virus but not influenza A virus. Furthermore, many of the host genes detected in this screen (92%) were not transcriptionally stimulated by IFN-α; these genes represent a heretofore unknown class of non-ISG IEGs. CONCLUSION: We performed a whole-genome loss-of-function screen to identify genes that mediate the effects of IFN-α against human pathogenic viruses. We found that IFN-α restricts HCV via actions of general and specific IEGs.
    Gastroenterology 02/2013; · 12.82 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014