Article

Representing information in cell assemblies: persistent activity mediated by semilunar granule cells.

Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA.
Nature Neuroscience (Impact Factor: 14.98). 02/2010; 13(2):213-22. DOI: 10.1038/nn.2458
Source: PubMed

ABSTRACT Here we found that perforant path stimulation in rat hippocampal slices evoked long-lasting barrages of synaptic inputs in subpopulations of dentate gyrus mossy cells and hilar interneurons. Synaptic barrages triggered persistent firing in hilar neurons (hilar up-states). We found that synaptic barrages originate from semilunar granule cells (SGCs), glutamatergic neurons in the inner molecular layer that generate long-duration plateau potentials in response to excitatory synaptic input. MK801, nimodipine and nickel all abolished both stimulus-evoked plateau potentials in SGCs and synaptic barrages in downstream hilar neurons without blocking fast synaptic transmission. Hilar up-states triggered functional inhibition in granule cells that persisted for more than 10 s. Hilar cell assemblies, identified by simultaneous triple and paired intracellular recordings, were linked by persistent firing in SGCs. Population responses recorded in hilar neurons accurately encoded stimulus identity. Stimulus-evoked up-states in the dentate gyrus represent a potential cellular basis for hippocampal working memory.

0 Bookmarks
 · 
63 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dentate gyrus serves as a gateway to the hippocampus, filtering and processing sensory inputs as an animal explores its environment. The hilus occupies a strategic position within the dentate gyrus from which it can play a pivotal role in these functions. Inputs from dentate granule cells converge on the hilus, and excitatory hilar mossy cells redistribute these signals back to granule cells to transform a pattern of cortical input into a new pattern of output to the hippocampal CA3 region. Using voltage-sensitive dye to image electrical activity in rat hippocampal slices, we explored how long-term potentiation (LTP) of different excitatory synapses modifies the flow of information. Theta burst stimulation of the perforant path potentiated responses throughout the molecular layer, but left responses in the CA3 region unchanged. By contrast, theta burst stimulation of the granule cell layer potentiated responses throughout the molecular layer, as well as in the CA3 region. Theta burst stimulation of the granule cell layer potentiated CA3 responses not only to granule cell layer stimulation but also to perforant path stimulation. Potentiation of responses in the CA3 region reflected NMDA receptor-dependent LTP of upstream synapses between granule cells and mossy cells, with no detectable contribution from NMDA receptor-independent LTP of local CA3 mossy fiber synapses. Potentiation of transmission to the CA3 region required LTP in both granule cell→mossy cell and mossy cell→granule cell synapses. This bidirectional plasticity enables hilar circuitry to regulate the flow of information through the dentate gyrus and on to the hippocampus.
    Journal of Neuroscience 07/2014; 34(29):9743-53. · 6.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The hippocampal formation receives strong cholinergic input from the septal/diagonal band complex. Although the functional effects of cholinergic activation have been extensively studied in pyramidal neurons within the hippocampus and entorhinal cortex, less is known about the role of cholinergic receptors on dentate gyrus neurons. Using intracellular recordings from rat dentate hilar neurons, we find that activation of m1-type muscarinic receptors selectively increases the excitability of glutamatergic mossy cells but not of hilar interneurons. Following brief stimuli, cholinergic modulation reveals a latent afterdepolarization response in mossy cells that can extend the duration of stimulus-evoked depolarization by >100 msec. Depolarizing stimuli also could trigger persistent firing in mossy cells exposed to carbachol or an m1 receptor agonist. Evoked IPSPs attenuated the ADP response in mossy cells. The functional effect of IPSPs was amplified during ADP responses triggered in the presence of cholinergic receptor agonists but not during slowly decaying simulated ADPs, suggesting that modulation of ADP responses by IPSPs arises from destabilization of the intrinsic currents underlying the ADP. Evoked IPSPs also could halt persistent firing triggered by depolarizing stimuli. These results show that through intrinsic properties modulated by muscarinic receptors, mossy cells can prolong depolarizing responses to excitatory input and extend the time window where multiple synaptic inputs can summate. By actively regulating the intrinsic response to synaptic input, inhibitory synaptic input can dynamically control the integration window that enables detection of coincident inputs and shape the spatial pattern of hilar cell activity.
    Learning & memory (Cold Spring Harbor, N.Y.) 04/2014; 21(5):263-71. · 4.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hippocampal control of memory formation is regulated by dopaminergic signaling. Whereas the role of dopamine D1 receptors is well documented in such regulations, functions of dopamine D2 receptors (DRD2) are not fully understood. Using fluorescence in situ hybridization we demonstrate that Drd2 expression in the hippocampus of wild-type mice is limited to glutamatergic hilar mossy cells. Using whole cell electrophysiological recordings in hippocampal slice preparations, we provide evidence that unlike in basal ganglia, activation of DRD2 by the selective agonist, quinpirole, induces a long-lasting increase in excitability of hilar mossy cells, which can be blocked by the DRD2 antagonist raclopride. Such activity is mediated by the Akt/GSK pathway, as application of specific inhibitors such as A1070722 or SB216763 prevented quinpirole activity. Long-term effects of acute DRD2 activation in vitro suggest that, volume transmission of dopamine may modulate mossy cell activities in vivo. This is supported by the presence of dense tyrosine hydroxylase positive varicosities in the hilus, which are rarely seen in the vicinity of mossy cell dendrites. From these data we discuss how dopamine could control mossy cell activity and thus dentate gyrus functions. © 2014 Wiley Periodicals, Inc.
    Hippocampus 04/2014; 24(7). · 4.30 Impact Factor

Preview

Download
1 Download
Available from