Article

Missense Mutations in TCF8 Cause Late-Onset Fuchs Corneal Dystrophy and Interact with FCD4 on Chromosome 9p

McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
The American Journal of Human Genetics (Impact Factor: 10.99). 01/2010; 86(1):45-53. DOI: 10.1016/j.ajhg.2009.12.001
Source: PubMed

ABSTRACT Fuchs corneal dystrophy (FCD) is a degenerative genetic disorder of the corneal endothelium that represents one of the most common causes of corneal transplantation in the United States. Despite its high prevalence (4% over the age of 40), the underlying genetic basis of FCD is largely unknown. Here we report missense mutations in TCF8, a transcription factor whose haploinsufficiency causes posterior polymorphous corneal dystrophy (PPCD), in a cohort of late-onset FCD patients. In contrast to PPCD-causing mutations, all of which are null, FCD-associated mutations encode rare missense changes suggested to cause loss of function by an in vivo complementation assay. Importantly, segregation of a recurring p.Q840P mutation in a large, multigenerational FCD pedigree showed this allele to be sufficient but not necessary for pathogenesis. Execution of a genome-wide scan conditioned for the presence of the 840P allele identified an additional late-onset FCD locus on chromosome 9p, whereas haplotype analysis indicated that the presence of the TCF8 allele and the disease haplotype on 9p leads to a severe FCD manifestation with poor prognosis. Our data suggest that PPCD and FCD are allelic variants of the same disease continuum and that genetic interaction between genes that cause corneal dystrophies can modulate the expressivity of the phenotype.

Download full-text

Full-text

Available from: Yi-Ju Li, Jul 05, 2015
0 Followers
 · 
142 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Posterior polymorphous corneal dystrophy (PPCD) is a dominantly inherited disorder of the corneal endothelium that has been associated with mutations in the zinc-finger E-box binding homeobox 1 gene (ZEB1) gene in approximately one-third of affected families. While the corneal dystrophies have traditionally been considered isolated disorders of the corneal endothelium, we have recently identified two cases of maldevelopment of the corpus callosum in unrelated individuals with PPCD. The proband of the first family was diagnosed shortly after birth with agenesis of the corpus callosum and several other developmental abnormalities. Karyotype, FISH and whole genome copy number variant analyses were normal. She was subsequently diagnosed with PPCD, prompting screening of the ZEB1 gene, which identified a novel deletion (c.449delG; p.(Gly150Alafs∗36)) present in the heterozygous state that was not identified in either unaffected parent. The proband of the second family was diagnosed several months after birth with thinning of the corpus callosum and PPCD. Whole genome copy number variant analysis revealed a 1.79 Mb duplication of 17q12 in the proband and her father and brother, neither of whom had PPCD. ZEB1 sequencing identified a novel deletion (c.1913-1914delCA; p.(Ser638Cysfs∗5)) present in the heterozygous state, which was also identified in the proband's affected mother. Thus, we report the first two cases of the association of PPCD with a developmental abnormality of the brain, in this case maldevelopment of the corpus callosum.
    Vision research 04/2014; 100. DOI:10.1016/j.visres.2014.04.007 · 2.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress may play a role in the pathogenesis of keratoconus (KC) and Fuchs endothelial corneal dystrophy (FECD). Iron may promote the stress by the Fenton reaction, so its homeostasis should be strictly controlled. Transferrin is essential for iron homeostasis because it transports iron from plasma into cells. The malfunction of transferrin, which may be caused by variation in its gene (TF) variation, may contribute to oxidative stress and change KC and FECD risk. To verify this hypothesis we investigated the association between three polymorphisms of the TF gene, g.3296G>A (rs8177178), g.3481A>G (rs8177179), and c.-2G>A (rs1130459), and KC and FECD occurrence. Genotyping was performed in blood lymphocytes in 216 patients with KC, 130 patients with FECD and 228 controls by PCR-RFLP. We studied also the influence of other risk factors. The A/A genotype and the A allele of the g.3296G>A polymorphism were associated with KC occurrence, while the G allele was negatively correlated with it. We observed a decrease in KC occurrence associated with the A/G genotype of the g.3481A>G polymorphism. We did not find any association between the c.-2G>A polymorphism and KC. No association was found between all three polymorphisms and FECD occurrence.
    11/2013; 2013:247438. DOI:10.1155/2013/247438
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Homozygous mutations in the Borate Cotransporter SLC4A11 cause two early-onset corneal dystrophies: congenital hereditary endothelial dystrophy (CHED) and Harboyan syndrome. More recently, four sporadic patients with late-onset Fuchs corneal dystrophy (FCD), a common age-related disorder, were also reported to harbor heterozygous mutations at this locus. We therefore tested the hypothesis that SLC4A11 contributes to FCD and asked whether mutations in SLC4A11 are responsible for familial cases of late-onset FCD. We sequenced SLC4A11 in 192 sporadic and small nuclear late-onset FCD families and found seven heterozygous missense novel variations that were absent from ethnically matched controls. Familial data available for one of these mutations showed segregation under a dominant model in a three-generational family. In silico analyses suggested that most of these substitutions are intolerant, whereas biochemical studies of the mutant protein indicated that these alleles impact the localization and/or posttranslational modification of the protein. These results suggest that heterozygous mutations in SLC4A11 are modest contributors to the pathogenesis of adult FCD, suggesting a causality continuum between FCD and CHED. Taken together with a recent model between FCD and yet another early onset corneal dystrophy, PPCD, our data suggest a shared pathomechanism and genetic overlap across several corneal dystrophies.
    Human Mutation 11/2010; 31(11):1261-8. DOI:10.1002/humu.21356 · 5.05 Impact Factor