Article

Role of hydroquinone-thiol conjugates in benzene-mediated toxicity

Department of Pharmacology and Toxicology, The University of Arizona Health Sciences Center, Southwest Environmental Health Sciences Center, Tucson, AZ 85721, United States.
Chemico-biological interactions (Impact Factor: 2.98). 03/2010; 184(1-2):212-7. DOI: 10.1016/j.cbi.2009.12.016
Source: PubMed

ABSTRACT Hydroquinone (HQ) is a metabolite of benzene, and in combination with phenol (PHE), reproduces benzene myelotoxicity. HQ readily oxidizes to 1,4-benzoquinone (1,4-BQ) followed by the reductive addition of glutathione (GSH). Subsequent cycles of oxidation and GSH addition give rise to a variety of mono-, and multi-GSH substituted conjugates. Following administration of PHE/HQ (1.1 mmol/kg/0.9 mmol/kg, ip) to male Sprague-Dawley (SD) rats, 2-(glutathion-S-yl)HQ [GS-HQ], 2,5-bis-(glutathion-S-yl)HQ [2,5-GS-HQ], 2,6-bis-(glutathion-S-yl)HQ [2,6-GS-HQ], and 2,3,5-tris-(glutathion-S-yl)HQ [2,3,5-GS-HQ] were all identified in bone marrow. 2-(Cystein-S-ylglycine)HQ [2-(CysGly)HQ], 2-(cystein-S-yl)HQ [2-(Cys)HQ], and 2-(N-acetylcystein-S-yl)HQ [2-(NACys)HQ] were also found in the bone marrow of PHE/HQ and benzene treated rats and mice, indicating the presence of an active mercapturic acid pathway within bone marrow. Moreover, 2,6-GS-HQ and 2,3,5-GS-HQ were hematotoxic when administered to rats. All of the HQ-GSH conjugates retain the ability to redox cycle and generate reactive oxygen species (ROS), and to arylate target proteins. Recent in vitro and in vivo studies in our laboratory revealed lysine and arginine residues as primary targets of 1,4-BQ, GS-HQ and 2-(NACys)HQ adduction. In contrast 1,4-BQ-adduction of cysteine residues may be a transient interaction, where physiological conditions dictate adduct stability. The generation of ROS and alkylation of proteins may both contribute to benzene-mediated myelotoxicity, and the two processes may be inter-dependent. However, the precise molecular mechanism by which benzene and HQ-GSH conjugates induce hematotoxicity remains to be determined. Within 18h of administration of PHE/HQ to SD rats a significant decrease in blood lymphocyte count was observed. At this early time point, erythrocyte counts and hemoglobin concentrations remained within the normal range. Concomitant with the decrease in lymphocyte count, western blot analysis of bone marrow lysate, using HQ-GSH and 4-hydroxy-2-nonenal (4HNE) specific antibodies, revealed the presence of HQ-GSH- and 4HNE-derived protein adducts. Identification of these adducts is required before the functional significance of such protein modifications can be determined.

Download full-text

Full-text

Available from: Shawn B Bratton, Jun 23, 2014
0 Followers
 · 
127 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Benzene exposure in occupational settings often occurs with concurrent exposure to toluene, the methyl-substituted derivative of benzene. Toluene is also readily metabolized by CYP450 isozymes although oxidation primarily occurs in the methyl group. While earlier mouse studies addressing co-exposure to benzene and toluene at high concentrations demonstrated a reduction in benzene-induced genotoxicity, we have previously found, using an intermittent exposure regimen with lower concentrations of benzene (50 ppm) and toluene (100 ppm), that toluene enhances benzene-induced clastogenic or aneugenic bone marrow injury in male CD-1 mice with significantly increased CYP2E1, and depleted GSH and GSSG levels. The follow-up study reported here also used the same daily and total co-exposures but over consecutive days and compared the effects of co-exposure on genotoxicity and metabolism in CD-1 mice both with and without buthionine sulfoximine (BSO) treatment to deplete GSH. In this study the toluene co-exposure doubled the genotoxic response (as determined by the erythrocyte micronucleus test) to benzene alone. Further, GSH depletion caused a reduction in this genotoxicity in both benzene exposed and benzene/toluene co-exposed mice. The results are discussed in terms of the analyses of urinary metabolites from this consecutive day study and the intermittent exposure study as well as levels of CYP2E1, epoxide hydrolase, quinone reductase, alcohol dehydrogenase, and aldehyde dehydrogenase activities. The results suggest that the presence of glutathione is necessary for benzene genotoxicity either as a metabolite conjugate or through an indirect mechanism such as TNF-induced apoptosis.
    Chemico-biological interactions 03/2010; 184(1-2):233-9. DOI:10.1016/j.cbi.2010.01.012 · 2.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hydroquinone (HQ) is a major benzene metabolite, which is produced after benzene biotransformation. In this study, we investigated the toxic effect of HQ on lymphocytes. HQ significantly induced the apoptosis of lymphocytes isolated from normal peripheral blood in both dose and time dependent courses. Volatile organic compounds such as benzene, phenol, formaldehyde, o- and p-xylene, and toluene have no effect on lymphocyte apoptosis. HQ induced the cleavage of procaspase 3 and procaspase 9, indicating activation of the pro-apoptotic enzymes. Supernatant was collected from normal lymphocytes after HQ treatment and it significantly induced the apoptosis of normal lymphocytes as compared to supernatant collected from normal lymphocytes without HQ treatment. HQ reduced the secretion of MCP-1, IL-6 and IL-8 increased by in vitro incubation, although benzene and phenol are not effective in cytokine production. HQ increased the intracellular ROS production of lymphocytes. Benzene and phenol also increased the ROS production. In summary, HQ has a cytotoxic effect on lymphocytes by apoptosis induction and the pro-apoptotic signaling is involved in caspase 9/3 pathway. Our results demonstrated that HQ induces apoptosis by activating caspases 9/3 pathway and that the toxic effect seems to be dependent on lymphocyte metabolism.
    Molecular Biology Reports 02/2012; 39(6):6737-43. DOI:10.1007/s11033-012-1498-y · 1.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Saturation diving is performed under extreme environmental conditions. The divers are confined to a limited space for several weeks under high environmental pressure and elevated oxygen partial pressure. At present, divers are protected against chemical exposure by standard exposure limits only adjusted for the increased exposure length, i.e. from 8 to 24 hours a day and from 5 to 7 days a week. The objective of the present study was to indicate a procedure for derivation of occupational exposure limits for saturation diving, termed hyperbaric exposure limits (HEL). Using benzene as an example, a procedure is described that includes identification of the latest key documents, extensive literature search with defined exclusion criteria for the literature retrieved. Hematotoxicity and leukemia were defined as the critical effects, and exposure limits based upon concentration and cumulative exposure data and corresponding risks of leukemia were calculated. Possible interactions of high pressure, elevated pO₂, and continuous exposure have been assessed, and incorporated in a final suggestion of a HEL for benzene. The procedure should be applicable for other relevant chemicals in the divers' breathing atmosphere. It is emphasized that the lack of interactions from pressure and oxygen indicated for benzene may be completely different for other chemicals.
    Critical Reviews in Toxicology 03/2012; 42(3):211-29. DOI:10.3109/10408444.2011.650791 · 6.41 Impact Factor