Article

Homology modeling and molecular dynamics simulations of HgiDII methyltransferase in complex with DNA and S-adenosyl-methionine: Catalytic mechanism and interactions with DNA

Center for Biologics Evaluation and Research, US FDA, CBER/DBPAP [HFM-443], 1401 Rockville Pike, Rockville, MD, 20852, USA.
Journal of Molecular Modeling (Impact Factor: 1.87). 07/2010; 16(7):1213-22. DOI: 10.1007/s00894-009-0632-9
Source: PubMed

ABSTRACT M.HgiDII is a methyltransferase (MTase) from Herpetosiphon giganteus that recognizes the sequence GTCGAC. This enzyme belongs to a group of MTases that share a high degree of amino acid similarity, albeit none of them has been thoroughly characterized. To study the catalytic mechanism of M.HgiDII and its interactions with DNA, we performed molecular dynamics simulations with a homology model of M.HgiDII complexed with DNA and S-adenosyl-methionine. Our results indicate that M.HgiDII may not rely only on Glu119 to activate the cytosine ring, which is an early step in the catalysis of cytosine methylation; apparently, Arg160 and Arg162 may also participate in the activation by interacting with cytosine O2. Another residue from the catalytic site, Val118, also played a relevant role in the catalysis of M.HgiDII. Val118 interacted with the target cytosine and kept water molecules from accessing the region of the catalytic pocket where Cys79 interacts with cytosine, thus preventing water-mediated disruption of interactions in the catalytic site. Specific recognition of DNA was mediated mainly by amino acids of the target recognition domain, although some amino acids (loop 80-88) of the catalytic domain may also contribute to DNA recognition. These interactions involved direct contacts between M.HgiDII and DNA, as well as indirect contacts through water bridges. Additionally, analysis of sequence alignments with closely related MTases helped us to identify a motif in the TRD of M.HgiDII that may be relevant to specific DNA recognition.

0 Followers
 · 
50 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA MTases (methyltransferases) catalyse the transfer of methyl groups to DNA from AdoMet (S-adenosyl-L-methionine) producing AdoHcy (S-adenosyl-L-homocysteine) and methylated DNA. The C5 and N4 positions of cytosine and N6 position of adenine are the target sites for methylation. All three methylation patterns are found in prokaryotes, whereas cytosine at the C5 position is the only methylation reaction that is known to occur in eukaryotes. In general, MTases are two-domain proteins comprising one large and one small domain with the DNA-binding cleft located at the domain interface. The striking feature of all the structurally characterized DNA MTases is that they share a common core structure referred to as an 'AdoMet-dependent MTase fold'. DNA methylation has been reported to be essential for bacterial virulence, and it has been suggested that DNA adenine MTases (Dams) could be potential targets for both vaccines and antimicrobials. Drugs that block Dam could slow down bacterial growth and therefore drug-design initiatives could result in a whole new generation of antibiotics. The transfer of larger chemical entities in a MTase-catalysed reaction has been reported and this represents an interesting challenge for bio-organic chemists. In general, amino MTases could therefore be used as delivery systems for fluorescent or other reporter groups on to DNA. This is one of the potential applications of DNA MTases towards developing non-radioactive DNA probes and these could have interesting applications in molecular biology. Being nucleotide-sequence-specific, DNA MTases provide excellent model systems for studies on protein-DNA interactions. The focus of this review is on the chemistry, enzymology and structural aspects of exocyclic amino MTases.
    Biochemical Journal 11/2006; 399(2):177-90. DOI:10.1042/BJ20060854 · 4.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A genetic selection method, the P22 challenge-phage assay, was used to characterize DNA binding in vivo by the prokaryotic beta class [N:6-adenine] DNA methyltransferase M.RSR:I. M.RSR:I mutants with altered binding affinities in vivo were isolated. Unlike the wild-type enzyme, a catalytically compromised mutant, M.RSR:I (L72P), demonstrated site-specific DNA binding in vivo. The L72P mutation is located near the highly conserved catalytic motif IV, DPPY (residues 65-68). A double mutant, M.RSR:I (L72P/D173A), showed less binding in vivo than did M.RSR:I (L72P). Thus, introduction of the D173A mutation deleteriously affected DNA binding. D173 is located in the putative target recognition domain (TRD) of the enzyme. Sequence alignment analyses of several beta class MTases revealed a TRD sequence element that contains the D173 residue. Phylogenetic analysis suggested that divergence in the amino acid sequences of these methyltransferases correlated with differences in their DNA target recognition sequences. Furthermore, MTases of other classes (alpha and gamma) having the same DNA recognition sequence as the beta class MTases share related regions of amino acid sequences in their TRDs.
    Nucleic Acids Research 11/2000; 28(20):3972-81. DOI:10.1093/nar/28.20.3972 · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: S-adenosylmethionine is a source of diverse chemical groups used in biosynthesis and modification of virtually every class of biomolecules. The most notable reaction requiring S-adenosylmethionine, transfer of methyl group, is performed by a large class of enzymes, S-adenosylmethionine-dependent methyltransferases, which have been the focus of considerable structure-function studies. Evolutionary trajectories of these enzymes, and especially of other classes of S-adenosylmethionine-binding proteins, nevertheless, remain poorly understood. We addressed this issue by computational comparison of sequences and structures of various S-adenosylmethionine-binding proteins. Two widespread folds, Rossmann fold and TIM barrel, have been repeatedly used in evolution for diverse types of S-adenosylmethionine conversion. There were also cases of recruitment of other relatively common folds for S-adenosylmethionine binding. Several classes of proteins have unique unrelated folds, specialized for just one type of chemistry and unified by the theme of internal domain duplications. In several cases, functional divergence is evident, when evolutionarily related enzymes have changed the mode of binding and the type of chemical transformation of S-adenosylmethionine. There are also instances of functional convergence, when biochemically similar processes are performed by drastically different classes of S-adenosylmethionine-binding proteins. Comparison of remote sequence similarities and analysis of phyletic patterns suggests that the last universal common ancestor of cellular life had between 10 and 20 S-adenosylmethionine-binding proteins from at least 5 fold classes, providing for S-adenosylmethionine formation, polyamine biosynthesis, and methylation of several substrates, including nucleic acids and peptide chain release factor. We have observed several novel relationships between families that were not known to be related before, and defined 15 large superfamilies of SAM-binding proteins, at least 5 of which may have been represented in the last common ancestor.
    BMC Structural Biology 02/2005; 5:19. DOI:10.1186/1472-6807-5-19 · 2.22 Impact Factor