Article

Nanoparticle inhalation impairs coronary microvascular reactivity via a local reactive oxygen species-dependent mechanism.

Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, 26506-9105, USA.
Cardiovascular toxicology (Impact Factor: 2.06). 03/2010; 10(1):27-36. DOI: 10.1007/s12012-009-9060-4
Source: PubMed

ABSTRACT We have shown that nanoparticle inhalation impairs endothelium-dependent vasodilation in coronary arterioles. It is unknown whether local reactive oxygen species (ROS) contribute to this effect. Rats were exposed to TiO(2) nanoparticles via inhalation to produce a pulmonary deposition of 10 microg. Coronary arterioles were isolated from the left anterior descending artery distribution, and responses to acetylcholine, arachidonic acid, and U46619 were assessed. Contributions of nitric oxide synthase and prostaglandin were assessed via competitive inhibition with N(G)-Monomethyl-L-Arginine (L-NMMA) and indomethacin. Microvascular wall ROS were quantified via dihydroethidium (DHE) fluorescence. Coronary arterioles from rats exposed to nano-TiO(2) exhibited an attenuated vasodilator response to ACh, and this coincided with a 45% increase in DHE fluorescence. Coincubation with 2,2,6,6-tetramethylpiperidine-N-oxyl and catalase ameliorated impairments in ACh-induced vasodilation from nanoparticle exposed rats. Incubation with either L-NMMA or indomethacin significantly attenuated ACh-induced vasodilation in sham-control rats, but had no effect in rats exposed to nano-TiO(2). Arachidonic acid induced vasoconstriction in coronary arterioles from rats exposed to nano-TiO(2), but dilated arterioles from sham-control rats. These results suggest that nanoparticle exposure significantly impairs endothelium-dependent vasoreactivity in coronary arterioles, and this may be due in large part to increases in microvascular ROS. Furthermore, altered prostanoid formation may also contribute to this dysfunction. Such disturbances in coronary microvascular function may contribute to the cardiac events associated with exposure to particles in this size range.

Full-text

Available from: Vincent Castranova, Apr 22, 2015
0 Followers
 · 
75 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract It has been suggested that engineered nanomaterials (ENM), once arrived in the circulation, may affect the cardiovascular system. The aim of this in vivo study was to screen major cardiovascular effects of acute systemic administration of a panel of five nanomaterials, TiO2 anatase (NM-101), TiO2 rutile (NM-104), ZnO (NM-110), SiO2 (NM-200) and Ag (NM-300). Mice were anesthetized and the ENM were injected at a dose of 1 mg/kg via a catheter placed in the left femoral artery. Hemodynamic parameters were determined by invasive measurement of blood pressure and non-invasive measurement of heart rate. Ten minutes after injection of the ENM, the formation of light/dye-induced thrombi was assessed in the cremasteric microcirculation by intravital microscopy. In addition, the numbers of rolling, firmly adherent and transmigrated leukocytes were recorded in postcapillary cremasteric venules over a time period of 120 min after injection of ENM by intravital microscopy. The systemic administration of a single dose of the ENM tested did not dramatically alter hemodynamic parameters or affect early steps of leukocyte recruitment. However, the presence of circulating TiO2 anatase, but not of TiO2 rutile, SiO2, ZnO or Ag nanoparticles, significantly accelerated thrombus formation in the murine microcirculation. Moreover, TiO2 anatase but not TiO2 rutile nanoparticles increased murine platelet aggregation in vitro. Taken together, only one of the five systemically administered ENM, TiO2 anatase, affected hemostasis, whereas none of the ENM tested in this screening study dramatically modulated hemodynamic parameters or early steps of leukocyte recruitment.
    Nanotoxicology 02/2015; DOI:10.3109/17435390.2014.992815 · 7.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to hard metal tungsten carbide cobalt (WC-Co) "dusts" in enclosed industrial environments is known to contribute to the development of hard metal lung disease and an increased risk for lung cancer. Currently, the influence of local and systemic inflammation on disease progression following WC-Co exposure remains unclear. To better understand the relationship between WC-Co nanoparticle (NP) exposure and its resultant effects, the acute local pulmonary and systemic inflammatory responses caused by WC-Co NPs were explored using an intra-tracheal instillation (IT) model and compared to those of CeO2 (another occupational hazard) NP exposure. Sprague-Dawley rats were given an IT dose (0-500 μg per rat) of WC-Co or CeO2 NPs. Following 24-hr exposure, broncho-alveolar lavage fluid and whole blood were collected and analyzed. A consistent lack of acute local pulmonary inflammation was observed in terms of the broncho-alveolar lavage fluid parameters examined (i.e. LDH, albumin, and macrophage activation) in animals exposed to WC-Co NP; however, significant acute pulmonary inflammation was observed in the CeO2 NP group. The lack of acute inflammation following WC-Co NP exposure contrasts with earlier in vivo reports regarding WC-Co toxicity in rats, illuminating the critical role of NP dose and exposure time and bringing into question the potential role of impurities in particle samples. Further, we demonstrated that WC-Co NP exposure does not induce acute systemic effects since no significant increase in circulating inflammatory cytokines were observed. Taken together, the results of this in vivo study illustrate the distinct differences in acute local pulmonary and systemic inflammatory responses to NPs composed of WC-Co and CeO2; therefore, it is important that the outcomes of pulmonary exposure to one type of NPs may not be implicitly extrapolated to other types of NPs.
    PLoS ONE 03/2015; 10(3):e0118778. DOI:10.1371/journal.pone.0118778 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazards of nanomaterials have been widely performed using cell models and a range of in vitro approaches. In the present review, we provide a comprehensive and critical literature overview on current in vitro toxicity test methods that have been applied to determine the mechanisms underlying the cytotoxic effects induced by the nanostructures. The small size, surface charge, hydrophobicity and high adsorption capacity of nanomaterial allow for specific interactions within cell membrane and subcellular organelles, which in turn could lead to cytotoxicity through a range of different mechanisms. Finally, aggregating the given information on the relationships of nanomaterial cytotoxic responses with an understanding of its structure and physicochemical properties may promote the design of biologically safe nanostructures.
    06/2014; 4(2):454-484. DOI:10.3390/nano4020454