Article

Identification of novel susceptibility genes in ozone-induced inflammation in mice

Dept of Pathobiology and Diagnostic Investigation Center for Integrative Toxicology B43 Food Safety and Toxicology Bldg, Michigan State University, East Lansing, MI 48824, USA.
European Respiratory Journal (Impact Factor: 7.13). 08/2010; 36(2):428-37. DOI: 10.1183/09031936.00145309
Source: PubMed

ABSTRACT Ozone (O(3)) remains a prevalent air pollutant and public health concern. Inf2 is a significant quantitative trait locus on murine chromosome 17 that contributes to susceptibility to O(3)-induced infiltration of polymorphonuclear leukocytes (PMNs) into the lung, but the mechanisms of susceptibility remain unclear. The study objectives were to confirm and restrict Inf2, and to identify and test novel candidate susceptibility gene(s). Congenic strains of mice that contained overlapping regions of Inf2 and their controls, and mice deficient in either major histocompatibility complex (MHC) class II genes or the Tnf cluster, were exposed to air or O(3). Lung inflammation and gene expression were assessed. Inf2 was restricted from 16.42 Mbp to 0.96 Mbp, and bioinformatic analysis identified MHC class II, the Tnf cluster and other genes in this region that contain potentially informative single nucleotide polymorphisms between the susceptible and resistant mice. Furthermore, O(3)-induced inflammation was significantly reduced in mice deficient in MHC class II genes or the Tnf cluster genes, compared with wild-type controls. Gene expression differences were also observed in MHC class II and Tnf cluster genes. This integrative genetic analysis of Inf2 led to identification of novel O(3) susceptibility genes that may provide important, new therapeutic targets in susceptible individuals.

0 Followers
 · 
88 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ozone is an air pollutant that causes pulmonary symptoms. In mice, ozone exposure causes pulmonary injury and increases bronchoalveolar lavage macrophages and neutrophils. We have shown that IL-17A is important in the recruitment of neutrophils after subacute ozone exposure (0.3 ppm for 24-72 h). We hypothesized that γδ T cells are the main producers of IL-17A after subacute ozone. To explore this hypothesis we exposed wildtype mice and mice deficient in γδ T cells (TCRδ-/-) to ozone or room air. Ozone-induced increases in BAL macrophages and neutrophils were attenuated in TCRδ-/- mice. Ozone increased the number of γδ T cells in the lungs and increased pulmonary Il17a mRNA expression and the number of IL-17A+ CD45+ cells in the lungs and these effects were abolished in TCRδ-/- mice. Ozone-induced increases in factors downstream of IL-17A signaling, including G-CSF, IL-6, IP-10 and KC were also decreased in TCRδ-/- versus wildtype mice. Neutralization of IL-17A during ozone exposure in wildtype mice mimicked the effects of γδ T cell deficiency. TNFR2 deficiency and etanercept, a TNFα antagonist, also reduced ozone-induced increases in Il17a mRNA, IL-17A+ CD45+ cells and BAL G-CSF as well as BAL neutrophils. TNFR2 deficient mice also had decreased ozone-induced increases in Ccl20, a chemoattractant for IL-17A+ γδ T cells. Il17a mRNA and IL-17A+ γδ T cells were also lower in obese Cpefat versus lean WT mice exposed to subacute ozone, consistent with the reduced neutrophil recruitment observed in the obese mice. Taken together, our data indicate that pulmonary inflammation induced by subacute ozone requires γδ T cells and TNFα-dependent recruitment of IL-17A+ γδ T cells to the lung.
    PLoS ONE 05/2014; 9(5):e97707. DOI:10.1371/journal.pone.0097707 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Exposure to ozone activates innate immune function and causes neutrophilic (PMN) airway inflammation that in some individuals is robustly elevated. The interplay between immuno-inflammatory function and genomic signaling in those with heightened inflammatory responsiveness to ozone is not well understood.Objectives Determine baseline predictors and post exposure discriminators for the immuno-inflammatory response to ozone in inflammatory responsive adult volunteers. METHODS: Sputum induction was performed on 27 individuals before and after a two hour chamber exposure to 0.4 ppm ozone. Subjects were classified as inflammatory responders or non-responders to ozone based on their PMN response. Innate immune function, inflammatory cell and cytokine modulation and transcriptional signaling pathways were measured in sputum. RESULTS: Post exposure, responders showed activated innate immune function (CD16: 31,004 MFI vs 8988 MFI; CD11b: 44,986 MFI vs 24,770 MFI; CD80: 2236 MFI vs 1506 MFI; IL-8: 37,603 pg/ml vs 2828 pg/ml; and IL-1beta: 1380 pg/ml vs 318 pg/ml) with muted signaling of immune cell trafficking pathways. In contrast, non-responders displayed decreased innate immune activity (CD16, CD80; phagocytosis: 2 particles/PMN vs 4 particles/PMN) post exposure that was accompanied by a heightened signaling of immune cell trafficking pathways. CONCLUSIONS: Inflammatory responsive and non responsive individuals to ozone show an inverse relationship between immune cell trafficking and immuno-inflammatory functional responses to ozone. These distinct genomic signatures may further our understanding about ozone-induced morbidity in individuals with different levels of inflammatory responsiveness.
    Respiratory research 10/2012; 13(1):89. DOI:10.1186/1465-9921-13-89 · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptor 4 (TLR4) is involved in ozone (O3)-induced pulmonary hyperpermeability and inflammation, although the downstream signaling events are unknown. The aims of our study were to determine the mechanism through which TLR4 modulates O3-induced pulmonary responses and to use transcriptomics to determine potential TLR4 effector molecules. C3H/HeJ (HeJ; Tlr4 mutant) and C3H/HeOuJ (OuJ; Tlr4 normal) mice were exposed continuously to 0.3 ppm O3 or filtered air for 6, 24, 48, or 72 hr. We assessed inflammation using bronchoalveolar lavage and molecular analysis by mRNA microarray, quantitative RT-PCR (real-time polymerase chain reaction), immunoblots, immunostaining, and ELISAs (enzyme-linked immunosorbent assays). B6-Hspa1a/Hspa1btm1Dix/NIEHS (Hsp70-/-) and C57BL/6 (B6; Hsp70+/+ wild-type control) mice were used for candidate gene validation studies. O3-induced TLR4 signaling occurred through myeloid differentiation protein 88 (MyD88)-dependent and -independent pathways in OuJ mice and involved multiple downstream pathways. Genomewide transcript analyses of lungs from air- and O3-exposed HeJ and OuJ mice identified a cluster of genes that were significantly up-regulated in O3-exposed OuJ mice compared with O3-exposed HeJ mice or air-exposed controls of both strains; this cluster included genes for heat-shock proteins (e.g., Hspa1b, Hsp70). Moreover, O3-induced inflammation, MyD88 up-regulation, extracellular-signal-related kinase-1/2 (ERK1/2) and activator protein-1 (AP-1) activation, and kerotinocyte-derived chemokine (KC) protein content were significantly reduced in Hspa1a/Hspa1btm1Dix (Hsp70-/-) compared with Hsp70+/+ mice (p < 0.05). These studies suggest that HSP70 is an effector molecule downstream of TLR4 and is involved in the regulation of O3-induced lung inflammation by triggering similar pathways to TLR4. These novel findings may have therapeutic and preventive implications for inflammatory diseases resulting from environmental exposures.
    Environmental Health Perspectives 05/2011; 119(8):1091-7. DOI:10.1289/ehp.1003326 · 7.03 Impact Factor

Full-text (2 Sources)

Download
22 Downloads
Available from
May 30, 2014

Elizabeth A Rondini