Article

Perfusion CT in patients with metastatic renal cell carcinoma treated with interferon.

Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Unit 368, Houston, TX 77030-4009, USA.
American Journal of Roentgenology (Impact Factor: 2.9). 01/2010; 194(1):166-71. DOI: 10.2214/AJR.09.3105
Source: PubMed

ABSTRACT The objective of our study was to assess the potential value of tumor perfusion parameters measured by perfusion CT as possible biomarkers of prognosis and early indicator of treatment efficacy in patients with metastatic conventional renal cell carcinoma (RCC) treated with interferon.
This study comprised 37 patients with metastatic RCC who were enrolled in a larger (n=118) randomized clinical trial of intermediate- versus low-dose interferon. Tumor perfusion parameters-that is, tumor blood flow, blood volume, mean transit time (MTT), and permeability-surface area product-of index metastatic lesions were obtained at baseline and at 8-week follow-up. Baseline perfusion parameters and changes at follow-up were compared, and their associations with patient progression-free survival were estimated. Univariate and multivariate analyses were performed.
Twenty-eight patients were assessable. Median progression-free survival was 5.3 months (95% CI, 2.4-7.4 months), with one partial response. Tumor blood flow at baseline was inversely associated with patient progression-free survival in both univariate (hazard ratio [HR]=1.006, p=0.025) and multivariate (HR=1.007, p=0.012) analyses. There were significant increases in tumor blood flow and reductions in MTT on follow-up scans compared with baseline scans (both, p=0.04), but no association between changes in perfusion parameters and progression-free survival was detected.
Patients with highly vascularized metastatic RCC as shown by high baseline tumor blood flow appear to have a worse prognosis than those who do not. Tumor perfusion may be a useful biomarker of prognosis and additionally, in the future, may assist in treatment stratification. The potential utility of perfusion CT as an early response indicator was probably inadequately assessed in this study because of the limited antiangiogenic activity of interferon in metastatic RCC.

0 Bookmarks
 · 
82 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To determine how commercial software platform upgrades impact on derived parameters for colorectal cancer. Following ethical approval, 30 patients with suspected colorectal cancer underwent Perfusion CT using integrated 64 detector PET/CT before surgery. Analysis was performed using software based on modified distributed parameter analysis (Perfusion software version 4; Perfusion 4.0), then repeated using the previous version (Perfusion software version 3; Perfusion 3.0). Tumour blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface area product (PS) were determined for identical regions-of-interest. Slice-by-slice and 'whole tumour' variance was assessed by Bland-Altman analysis. Mean BF, BV and PS was 20.4%, 59.5%, and 106% higher, and MTT 14.3% shorter for Perfusion 4.0 than Perfusion 3.0. The mean difference (95% limits of agreement) were +13.5 (-44.9 to 72.0), +2.61 (-0.06 to 5.28), -1.23 (-6.83 to 4.36), and +14.2 (-4.43 to 32.8) for BF, BV, MTT and PS respectively. Within subject coefficient of variation was 36.6%, 38.0%, 27.4% and 60.6% for BF, BV, MTT and PS respectively indicating moderate to poor agreement. Software version upgrades of the same software platform may result in significantly different parameter values, requiring adjustments for cross-version comparison.
    European Radiology 10/2010; 21(4):744-9. · 4.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The molecular events of tumorigenesis in neuroendocrine tumors are poorly understood. Understanding of the molecular alterations will lead to the identification of molecular markers, providing new targets for therapeutics. The purpose of this review was to critically analyze the genetic abnormalities in neuroendocrine tumors, with the aim of identifying biomarkers that indicate a response to agents developed against these targets and to serve as an understanding for the combinations of different active compounds. Human epidermal growth factor receptor 1/2 (EGFR and HER2), vascular endothelial growth factor receptors, hepatocyte growth factor receptor (c-Met), platelet-derived growth factor receptor, insulin-like growth factor, phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin pathway, and heat shock proteins are all interesting candidate biomarkers with involvement in carcinogenesis and tumor evolution of several neoplasms, including neuroendocrine tumors. Some of them have already been evaluated both as targets and also as biomarkers in clinical trials conducted in advanced neuroendocrine tumor settings, and others should encourage further investigations into innovative therapeutic opportunities.
    CANCER AND METASTASIS REVIEW 04/2013; · 9.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dynamic contrast-enhanced computed tomography (DCE-CT) assesses the vascular support of tumours through analysis of temporal changes in attenuation in blood vessels and tissues during a rapid series of images acquired with intravenous administration of iodinated contrast material. Commercial software for DCE-CT analysis allows pixel-by-pixel calculation of a range of validated physiological parameters and depiction as parametric maps. Clinical studies support the use of DCE-CT parameters as surrogates for physiological and molecular processes underlying tumour angiogenesis. DCE-CT has been used to provide biomarkers of drug action in early phase trials for the treatment of a range of cancers. DCE-CT can be appended to current imaging assessments of tumour response with the benefits of wide availability and low cost. This paper sets out guidelines for the use of DCE-CT in assessing tumour vascular support that were developed using a Delphi process. Recommendations encompass CT system requirements and quality assurance, radiation dosimetry, patient preparation, administration of contrast material, CT acquisition parameters, terminology and units, data processing and reporting. DCE-CT has reached technical maturity for use in therapeutic trials in oncology. The development of these consensus guidelines may promote broader application of DCE-CT for the evaluation of tumour vascularity. Key Points • DCE-CT can robustly assess tumour vascular support • DCE-CT has reached technical maturity for use in therapeutic trials in oncology • This paper presents consensus guidelines for using DCE-CT in assessing tumour vascularity.
    European Radiology 02/2012; 22(7):1430-41. · 4.34 Impact Factor