Wada, S. et al. Rubratoxin A specifically and potently inhibits protein phosphatase 2A and suppresses cancer metastasis. Cancer Sci. 101, 743-750

Numazu Bio-Medical Research Institute, Microbial Chemistry Research Foundation, Shizuoka.
Cancer Science (Impact Factor: 3.52). 11/2009; 101(3):743-50. DOI: 10.1111/j.1349-7006.2009.01438.x
Source: PubMed


(Cancer Sci 2010; 101: 743–750)
Although cytostatin analog protein phosphatase 2A (PP2A)-specific inhibitors are promising candidates of a new type of anticancer drug, their development has been hindered because of their liability. To find new classes of PP2A-specific inhibitors, we conducted a screening with microbial metabolites and found that rubratoxin A, a classical mycotoxin, is a highly specific and potent inhibitor of the enzyme. While rubratoxin A inhibits PP2A at Ki = 28.7 nm, it hardly inhibited any other phosphatases examined. Rubratoxin B, a close analog, also specifically but weakly inhibits PP2A at Ki = 3.1 μm. The inhibition of intracellular PP2A in cultured cells is obviously observed with 20 μm rubratoxin A treatment for 3 h, inducing the overphosphorylation in PP2A substrate proteins. Although rubratoxins and cytostatin differ in the apparent structures, these compounds share similarities in the structures in detail and PP2A-binding manners. Rubratoxin A showed higher suppression of tumor metastasis and reduction of the primary tumor volume than cytostatin in mouse experiments. As a successor of cytostatin analogs, rubratoxin A should be a good compound leading to the development of antitumor drugs targeting PP2A.

Download full-text


Available from: Shun-ichi Ohba, Nov 21, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A block in apoptotic cell death is a likely requirement for cancer maintenance. Likewise, drug resistance, one of the key clinical problems in oncology, can often be explained by apoptotic resistance following drug administration. Several signalling pathways can commit cells to death, including intrinsic mitochondrial pathways controlled by the Bcl-2-like proteins, extrinsic Death Receptor-triggered pathways, and Dependence Receptor-initiated pathways. In addition, depending on the cell type, external stimulus and context, various other pro- or anti-survival signalling pathways may become repressed or activated. Proper coordination and conversion into a common cellular response is ensured by various ways of inter-pathway crosstalk. As for most signalling cascades, post-translational control of the signalling proteins involved is mainly achieved by reversible phosphorylation and thus by the coordinated actions of protein kinases and phosphatases. Despite increasing interest in phosphatases as potential tumour suppressors, their role in controlling apoptotic signalling remains poorly understood. Here we review current knowledge about the regulatory functions of Protein Phosphatase type 2A (PP2A) phosphatases in these apoptotic signalling networks. PP2A represents an abundant class of structurally complex Ser/Thr phosphatases which are of particular interest in this context because of their recently established role as genuine tumour suppressors. In line with these tumour suppressive characteristics, PP2A predominantly displays pro-apoptotic functions, although some PP2A complexes also clearly counteract apoptotic cell death. Finally, we speculate how this knowledge might be exploited for therapeutic purposes, in light of pre-clinical pharmacological approaches, currently demonstrated to target PP2A in cancer cells.
    Current Molecular Medicine 02/2012; 12(3):268-87. DOI:10.2174/156652412799218930 · 3.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Taxa of the Talaromyces purpurogenus complex were studied using a polyphasic approach. ITS barcodes were used to show relationships between species of the T. purpurogenus complex and other Talaromyces species. RPB1, RPB2, β-tubulin and calmodulin sequences were used to delimit phylogenetic species in the complex. These data, combined with phenotypic characters, showed that the complex contains four species: T. purpurogenus, T. ruber comb. nov. and two new species T. amestolkiae sp. nov. and T. stollii sp. nov. The latter three species belong to the same clade and T. purpurogenus is located in a phylogenetic distant clade. The four species all share similar conidiophore morphologies, but can be distinguished by macromorphological characters. Talaromyces ruber has a very distinct colony texture on malt extract agar (MEA), produces bright yellow and red mycelium on yeast extract sucrose agar (YES) and does not produce acid on creatine sucrose agar (CREA). In contrast, T. amestolkiae and T. stollii produce acid on CREA. These two species can be differentiated by the slower growth rate of T. amestolkiae on CYA incubated at 36 °C. Furthermore, T. stollii produces soft synnemata-like structures in the centre of colonies on most media. Extrolite analysis confirms the distinction of four species in the T. purpurogenus complex. The red diffusing pigment in T. purpurogenus is a mixture of the azaphilone extrolites also found in Monascus species, including N-glutarylrubropunctamine and rubropunctatin. Talaromyces purpurogenus produced four different kinds of mycotoxins: rubratoxins, luteoskyrin, spiculisporic acid and rugulovasins and these mycotoxins were not detected in the other three species.
    Persoonia - Molecular Phylogeny and Evolution of Fungi 12/2012; 29(1):39-54. DOI:10.3767/003158512X659500 · 5.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein phosphatases of the type 2A family (PP2A) represent a major fraction of cellular Ser/Thr phosphatase activity in any given human tissue. In this review, we describe how the holoenzymic nature of PP2A and the existence of several distinct PP2A composing subunits allow for the generation of multiple structurally and functionally different PP2A complexes, explaining why PP2A is involved in the regulation of so many diverse cell biological and physiological processes. Moreover, in human disease, most notably in several cancers and Alzheimer's Disease, PP2A expression and/or activity have been found significantly decreased, underscoring its important functions as a major tumor suppressor and tau phosphatase. Hence, several recent preclinical studies have demonstrated that pharmacological restoration of PP2A activity, as well as pharmacological PP2A inhibition, under certain conditions, may be of significant future therapeutic value.
    Methods in molecular biology (Clifton, N.J.) 07/2013; 1053:283-305. DOI:10.1007/978-1-62703-562-0_17 · 1.29 Impact Factor
Show more