Expression of the VP2 protein of murine norovirus by a translation termination-reinitiation strategy.

Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK.
PLoS ONE (Impact Factor: 3.53). 01/2009; 4(12):e8390. DOI: 10.1371/journal.pone.0008390
Source: PubMed

ABSTRACT Expression of the minor virion structural protein VP2 of the calicivirus murine norovirus (MNV) is believed to occur by the unusual mechanism of termination codon-dependent reinitiation of translation. In this process, following translation of an upstream open reading frame (ORF) and termination at the stop codon, a proportion of 40S subunits remain associated with the mRNA and reinitiate at the AUG of a downstream ORF, which is typically in close proximity. Consistent with this, the VP2 start codon (AUG) of MNV overlaps the stop codon of the upstream VP1 ORF (UAA) in the pentanucleotide UAAUG.
Here, we confirm that MNV VP2 expression is regulated by termination-reinitiation and define the mRNA sequence requirements. Efficient reintiation is dependent upon 43 nt of RNA immediately upstream of the UAAUG site. Chemical and enzymatic probing revealed that the RNA in this region is not highly structured and includes an essential stretch of bases complementary to 18S rRNA helix 26 (Motif 1). The relative position of Motif 1 with respect to the UAAUG site impacts upon the efficiency of the process. Termination-reinitiation in MNV was also found to be relatively insensitive to the initiation inhibitor edeine.
The termination-reinitiation signal of MNV most closely resembles that of influenza BM2. Similar to other viruses that use this strategy, base-pairing between mRNA and rRNA is likely to play a role in tethering the 40S subunit to the mRNA following termination at the VP1 stop codon. Our data also indicate that accurate recognition of the VP2 ORF AUG is not a pre-requisite for efficient reinitiation of translation in this system.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The accuracy of start codon selection is determined by the translation initiation process. In prokaryotes the initiation step on most mRNAs relies on recruitment of the small ribosomal subunit onto the initiation codon by base pairing between the mRNA and the 16S rRNA. Eukaryotes have evolved a complex molecular machinery involving at least 11 initiation factors, and mRNAs do not directly recruit the small ribosomal subunit. Instead the initiation complex is recruited to the 5’ end of the mRNA through a complex protein network including eIF4E that interacts with the 5’ cap structure and poly-A binding protein that interacts with the 3’end. However, some viral and cellular mRNAs are able to escape this pathway by internal recruitment of one or several components of the translation machinery. Here we review those eukaryotic mRNAs that have been reported to directly recruit the 40S ribosomal subunit internally. In the well characterized cases of viral IRESes, a specific RNA structure is involved in this process, and in addition to recruitment of the ribosome, the mRNA also manipulates the ribosome structure to stimulate the first translocation step. We also review recently described IRES/ribosome interactions in cases where the molecular mechanism leading to translation initiation has yet to be described. Finally we evaluate the possibility that mRNA may recruit the 40S ribosomal subunit through base pairing with the 18S rRNA.
    Biochimie 12/2014; 106. · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prototype victorivirus HvV190S employs stop/restart translation to express its RdRp from the downstream ORF in its bicistronic mRNA. The signals for this activity appear to include a predicted RNA pseudoknot directly upstream of the CP stop and RdRp start codons, which overlap in the motif AUGA. Here we used a dual-fluorescence system to further define which HvV190S sequences are important for stop/restart translation and found that the AUGA motif plus 38 nt directly upstream are both necessary and sufficient for this activity. This RNA cassette encompasses the predicted pseudoknot, and indeed substitutions that disrupted the pseudoknot disrupted the activity whereas complementary substitutions that restored the pseudoknot restored the activity. Replacement of this RNA cassette with those from other victoriviruses with a predicted pseudoknot in comparable position also supported stop/restart translation. To our knowledge, this is the first example of stop/restart translation regulated by an RNA pseudoknot.
    Virology 11/2014; · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identification of the full complement of genes and other functional elements in any virus is crucial to fully understand its molecular biology and guide the development of effective control strategies. RNA viruses have compact multifunctional genomes that frequently contain overlapping genes and non-coding functional elements embedded within protein-coding sequences. Overlapping features often escape detection because it can be difficult to disentangle the multiple roles of the constituent nucleotides via mutational analyses, while high-throughput experimental techniques are often unable to distinguish functional elements from incidental features. However, RNA viruses evolve very rapidly so that, even within a single species, substitutions rapidly accumulate at neutral or near-neutral sites providing great potential for comparative genomics to distinguish the signature of purifying selection. Computationally identified features can then be efficiently targeted for experimental analysis. Here we analyze alignments of protein-coding virus sequences to identify regions where there is a statistically significant reduction in the degree of variability at synonymous sites, a characteristic signature of overlapping functional elements. Having previously tested this technique by experimental verification of discoveries in selected viruses, we now analyze sequence alignments for ∼700 RNA virus species to identify hundreds of such regions, many of which have not been previously described.
    Nucleic Acids Research 10/2014; · 8.81 Impact Factor

Full-text (3 Sources)

Available from
Aug 14, 2014