Correlation between expression of p53, p21/WAF1, and MDM2 proteins and their prognostic significance in primary hepatocellular carcinoma.

State Key Laboratory of Oncology in Southern China, Cancer Center of Sun Yat-Sen University, Guangzhou, China.
Journal of Translational Medicine (Impact Factor: 3.99). 12/2009; 7:110. DOI: 10.1186/1479-5876-7-110
Source: PubMed

ABSTRACT Tumor Protein p53 (p53), cyclin-dependent kinase inhibitor 1A (p21/WAF1), and murine double minute 2 (MDM2) participate in the regulation of cell growth. Altered expression of these gene products has been found in malignant tumors and has been associated with poor prognosis. Our aim was to investigate the expression of the 3 proteins in hepatocellular carcinoma (HCC) and their prognostic significance.
We examined p53, p21/WAF1, and MDM2 expression in 181 pairs of HCC tissues and the adjacent hepatic tissues by performing immunohistochemistry and examined the expression of the 3 proteins in 7 pairs of HCC tissues and the adjacent hepatic tissues by using western blot analysis.
The expression of p53, p21/WAF1, and MDM2 in the HCC tissues was significantly higher than those in the adjacent hepatic tissues (P < 0.05). A statistical correlation was observed between p53 and p21/WAF1 expression in HCC tissues (R = 0.195, P = 0.008). A statistical correlation was observed between expression of p53 and p21/WAF1 (R = 0.380, P = 0.000), p53 and MDM2 (R = 0.299, P = 0.000), p21/WAF1 and MDM2 (R = 0.285, P = 0.000) in 181 liver tissues adjacent to the tumor. Patients with a low pathologic grade HCC (I+II) had a higher tendency to express p53 on tumor cells than the patients with high pathologic grade HCC (III+IV) (P = 0.007). Survival analysis showed that positive p21/WAF1 expression or/and negative MDM2 expression in HCC was a predictor of better survival of patients after tumor resection (P < 0.05).
The proteins p53, p21/WAF1, and MDM2 were overexpressed in all the HCC cases in this study, and p53 and p21/WAF1 overexpression were positively correlated. The expression of p21/WAF1 and MDM2 can be considered as 2 useful indicators for predicting the prognosis of HCC.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Uncontrolled cell proliferation and suppressed apoptosis are the critical events transforming a normal cell to a cancerous one wherein the inflammatory microenvironment supports this oncogenic transformation. The process of colon carcinogenesis may be aggravated in chronic inflammatory conditions such as ulcerative colitis where non-steroidal anti-inflammatory drugs (NSAIDs) may effectively prevent the cellular and molecular events. Methods Western blots and immunofluorescent analysis of DNA mismatch repair enzymes, cell cycle regulators and pro- and anti-apoptotic proteins were performed in dextran sulfate sodium (DSS)-induced ulcerative colitis and 1,2-dimethyl benz(a)anthracene (DMH)-induced colon cancer. Also, apoptotic studies were done in isolated colonocytes using fluorescent staining and in paraffin sections using TUNEL assay. Results An upregulation of cell cycle regulators: cyclin D1/cdk4 and cyclin E/cdk2 and anti-apoptotic Bcl-2, along with the suppression of DNA repair enzymes: MLH1 and MSH2; tumour suppressors: p53, p21and Rb and pro-apoptotic proteins: Bax and Bad were observed in the DSS, DMH and DSS + DMH groups. Proliferating cell nuclear antigen (PCNA) was also overexpressed in these groups. The ultimate executioner of the apoptotic pathway; caspase-3, was suppressed in these groups. Apoptotic studies in colonocytes and paraffin sections revealed suppressed apoptosis in these groups. These effects were corrected with the administration of a second generation NSAID, celecoxib along with the treatment of DSS and DMH. Conclusion The chemopreventive action of celecoxib in colitis mediated colon carcinogenesis may include the regulation of DNA mismatch repair enzymes, cell cycle check points, cell proliferation and apoptosis.
    Pharmacological reports: PR 12/2014; DOI:10.1016/j.pharep.2014.07.001 · 2.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide. Although new therapeutic strategies have been continuously developed and applied to clinical treatment for HCC, the prognosis is still very poor. Thus, early detection of HCC may enhance effective and curative management. In this study, autoantibody responses to MDM2 protein in HCC patient's serum were evaluated by enzyme-linked immunosorbent assay (ELISA) and part sera were evaluated by Western blotting and indirect immunofluorescence assay. Immunohistochemistry (IHC) over tissue array slides was also performed to analyze protein expression of MDM2 in HCC and control tissues. The prevalence of autoantibodies against MDM2 was significantly higher than that in liver cirrhosis (LC), chronic hepatitis (CH), and normal human sera (NHS). The average titer of autoantibodies against MDM2 in HCC serum was higher compared to that in LC, CH, and NHS. A high titer of autoantibodies against MDM2 in ELISA could be observed in the serum in 6 to 9 months before the clinical diagnosis of HCC in the serum of several HCC patients with serial bleeding samples. Our preliminary data indicate that MDM2 and anti-MDM2 system may be a potential biomarker for early stage HCC screening and immunodiagnosis.
    Research Journal of Immunology 05/2014; 2014:906532. DOI:10.1155/2014/906532
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abnormalities in the TP53 gene and overexpression of MDM2, a transcriptional target and negative regulator of p53, are commonly observed in cancers. The MDM2-p53 feedback loop plays an important role in tumor progression and thus, increased understanding of the pathway has the potential to improve clinical outcomes for cancer patients. Hepatocellular carcinoma (HCC) has emerged as one of the most commonly diagnosed forms of human cancer; yet, the current treatment for HCC is less effective than those used against other cancers. We review the current studies of the MDM2-p53 pathway in cancer with a focus on HCC and specifically discuss the impact of p53 mutations along with other alterations of the MDM2-p53 feedback loop in HCC. We also discuss the potential diagnostic and prognostic applications of p53 and MDM2 in malignant tumors as well as therapeutic avenues that are being developed to target the MDM2-p53 pathway. Cancer Res; 74(24); 1-7. ©2014 AACR. ©2014 American Association for Cancer Research.
    Cancer Research 12/2014; 74(24). DOI:10.1158/0008-5472.CAN-14-1446 · 9.28 Impact Factor

Full-text (4 Sources)

Available from
May 21, 2014