Are Antarctic minke whales unusually abundant because of 20th century whaling?

Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA.
Molecular Ecology (Impact Factor: 6.28). 12/2009; 19(2):281-91. DOI: 10.1111/j.1365-294X.2009.04447.x
Source: PubMed

ABSTRACT Severe declines in megafauna worldwide illuminate the role of top predators in ecosystem structure. In the Antarctic, the Krill Surplus Hypothesis posits that the killing of more than 2 million large whales led to competitive release for smaller krill-eating species like the Antarctic minke whale. If true, the current size of the Antarctic minke whale population may be unusually high as an indirect result of whaling. Here, we estimate the long-term population size of the Antarctic minke whale prior to whaling by sequencing 11 nuclear genetic markers from 52 modern samples purchased in Japanese meat markets. We use coalescent simulations to explore the potential influence of population substructure and find that even though our samples are drawn from a limited geographic area, our estimate reflects ocean-wide genetic diversity. Using Bayesian estimates of the mutation rate and coalescent-based analyses of genetic diversity across loci, we calculate the long-term population size of the Antarctic minke whale to be 670,000 individuals (95% confidence interval: 374,000-1,150,000). Our estimate of long-term abundance is similar to, or greater than, contemporary abundance estimates, suggesting that managing Antarctic ecosystems under the assumption that Antarctic minke whales are unusually abundant is not warranted.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Seabirds and their response to climate pertur-bations are important bioindicators of changes in Antarctic ecosystems. During 30 years of observations of two chin-strap penguin (Pygoscelis antarcticus) colonies, one on King George Island and the other on Penguin Island (South Shetland Islands, Antarctica), the size of the breeding populations decreased by 84 and 41 %, respectively. We applied analyses of amplified fragment length polymor-phisms to study the genetic structure of the two populations and to evaluate the influence of the sudden population decrease. Our data indicate that there were only weak genetic differences between the populations, which were not strong enough to support the hypothesis of population differentiation. Weak genetic differences observed between the two populations seem not to be determined by selection processes. We hypothesize that the very low level of between-population genetic structure can be explained by some extent of genetic drift, which is largely compensated by gene flow. Moreover, the two populations seem to remain in a stationary state. Our results support the hypothesis of limited natal philopatry in chinstrap pen-guins. The observed decrease in population size is probably caused by emigration or a rise in juvenile mortality due to the increasing krill limitation of the marine food web. However, detailed research is required to address this issue.
    Polar Biology 06/2012; 35:1681-1689. · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT:  Effective population size (Ne) determines the strength of genetic drift in a population and has long been recognized as an important parameter for evaluating conservation status and threats to genetic health of populations. Specifically, an estimate of Ne is crucial to management because it integrates genetic effects with the life history of the species, allowing for predictions of a population's current and future viability. Nevertheless, compared with ecological and demographic parameters, Ne has had limited influence on species management, beyond its application in very small populations. Recent developments have substantially improved Ne estimation; however, some obstacles remain for the practical application of Ne estimates. For example, the need to define the spatial and temporal scale of measurement makes the concept complex and sometimes difficult to interpret. We reviewed approaches to estimation of Ne over both long-term and contemporary time frames, clarifying their interpretations with respect to local populations and the global metapopulation. We describe multiple experimental factors affecting robustness of contemporary Ne estimates and suggest that different sampling designs can be combined to compare largely independent measures of Ne for improved confidence in the result. Large populations with moderate gene flow pose the greatest challenges to robust estimation of contemporary Ne and require careful consideration of sampling and analysis to minimize estimator bias. We emphasize the practical utility of estimating Ne by highlighting its relevance to the adaptive potential of a population and describing applications in management of marine populations, where the focus is not always on critically endangered populations. Two cases discussed include the mechanisms generating Ne estimates many orders of magnitude lower than census N in harvested marine fishes and the predicted reduction in Ne from hatchery-based population supplementation.Resumen: El tamaño poblacional efectivo (Ne) determina la fuerza de la deriva génica en una población y durante mucho tiempo ha sido reconocido como un parámetro importante para evaluar el estatus de conservación y las amenazas a la salud genética de las poblaciones. Específicamente, una estimación de Ne es crucial para el manejo porque integra los efectos genéticos con la historia de vida de la especie, lo que permite predicciones de la viabilidad actual y futura de una población. Sin embargo, comparado con parámetros ecológicos y demográficos, Ne ha tenido una influencia limitada sobre el manejo de especies, más allá de su aplicación en poblaciones muy pequeñas. Desarrollos recientes han mejorado sustancialmente la estimación de Ne; sin embargo, persisten algunos obstáculos para la aplicación práctica de las estimaciones de Ne, Por ejemplo, la necesidad de definir la escala espacial y temporal de la medida hace que el concepto sea complejo y difícil de interpretar en algunas ocasiones. Revisamos los métodos de estimación de Ne en marcos de tiempo a largo plazo y contemporáneos, clarificando sus interpretaciones con respecto a poblaciones locales y la metapoblación global. Describimos múltiples factores experimentales que afectan la robustez de las estimaciones contemporáneas de Ne y sugerimos que se pueden combinar diferentes diseños de muestreo para comparar medidas marcadamente independientes de Ne para una mejor confianza en el resultado. Poblaciones grandes con flujo génico moderado presentan el mayor reto para estimaciones de Ne contemporánea y requieren de cuidadosas consideraciones de muestreo y análisis para minimizar el sesgo del estimador. Enfatizamos la utilidad práctica de la estimación de Ne al resaltar su relevancia para el potencial adaptativo de una población y describiendo aplicaciones en el manejo de poblaciones marinas, en las que el enfoque no siempre ha sido sobre poblaciones en peligro crítico. Dos casos discutidos incluyen los mecanismos que generan estimaciones de Ne muchos órdenes de magnitud por debajo de N censal en poblaciones de peces marinos explotados y la reducción de Ne pronosticada en la suplementación de poblaciones a partir de criaderos.
    Conservation Biology 01/2011; 25(3):438 - 449. · 4.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inferring the number of genetically distinct populations and their levels of connectivity is of key importance for the sustainable management and conservation of wildlife. This represents an extra challenge in the marine environment where there are few physical barriers to gene-flow, and populations may overlap in time and space. Several studies have investigated the population genetic structure within the North Atlantic minke whale with contrasting results. In order to address this issue, we analyzed ten microsatellite loci and 331 bp of the mitochondrial D-loop on 2990 whales sampled in the North East Atlantic in the period 2004 and 2007-2011. The primary findings were: (1) No spatial or temporal genetic differentiations were observed for either class of genetic marker. (2) mtDNA identified three distinct mitochondrial lineages without any underlying geographical pattern. (3) Nuclear markers showed evidence of a single panmictic population in the NE Atlantic according STRUCTURE's highest average likelihood found at K = 1. (4) When K = 2 was accepted, based on the Evanno's test, whales were divided into two more or less equally sized groups that showed significant genetic differentiation between them but without any sign of underlying geographic pattern. However, mtDNA for these individuals did not corroborate the differentiation. (5) In order to further evaluate the potential for cryptic structuring, a set of 100 in silico generated panmictic populations was examined using the same procedures as above showing genetic differentiation between two artificially divided groups, similar to the aforementioned observations. This demonstrates that clustering methods may spuriously reveal cryptic genetic structure. Based upon these data, we find no evidence to support the existence of spatial or cryptic population genetic structure of minke whales within the NE Atlantic. However, in order to conclusively evaluate population structure within this highly mobile species, more markers will be required.
    PLoS ONE 09/2014; 9:e108640. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014