Article

Oxidative stress and medical antioxidant treatment in male infertility.

Territorial Center of Andrology, AUSL 8, Syracuse, Italy.
Reproductive biomedicine online (Impact Factor: 2.98). 11/2009; 19(5):638-59. DOI: 10.1016/j.rbmo.2009.09.014
Source: PubMed

ABSTRACT Oxidative stress (OS) has been recognized as one of the most important cause of male infertility. Despite the antioxidant activity of seminal plasma, epididymis and spermatozoa, OS damages sperm function and DNA integrity. Since antioxidants suppress the action of reactive oxygen species, these compounds have been used in the medical treatment of male infertility or have been added to the culture medium during sperm separation techniques. Nevertheless, the efficacy of such a treatment has been reported to be very limited. This may relate to: (i) patient selection bias; (ii) late diagnosis of male infertility; (iii) lack of double-blind, placebo-controlled clinical trial; and/or (iv) use of end-points that are not good markers of the presence of OS. This review considers the effects of the main antioxidant compounds used in clinical practice. Overall, the data published suggest that no single antioxidant is able to enhance fertilizing capability in infertile men, whereas a combination of them seems to provide a better approach. Taking into account the pros and the cons of antioxidant treatment of male infertility, the potential advantages that it offers cannot be ignored. Therefore, antioxidant therapy should remain in the forefront of preventive medicine, including human reproductive medicine.

0 Followers
 · 
151 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen species (ROS) are an integral component of sperm developmental physiology, capacitation, and function. Elevated ROS levels, from processes such as infection or inflammation, can be associated with aberrations of sperm development, function, and fertilizing capacity. We review the impact of ROS on sperm physiology, its place in infertility evaluation, the implications for reproductive outcomes, and antioxidant therapy. Our systematic review of PubMed literature from the last 3 decades focuses on the physiology and etiology of ROS and oxidative stress (OS), evaluation of ROS, and antioxidants. ROS is normally produced physiologically and is used to maintain cellular processes such as sperm maturation, capacitation, and sperm-oocyte interaction. When ROS production exceeds the buffering capacity of antioxidants, OS occurs and can have a negative impact on sperm and fertility. ROS and antioxidant capacity testing can potentially add additional prognostic information to standard laboratory testing for the infertile male, although its role as standard part of an evaluation has yet to be determined. Elevated ROS levels have been implicated with abnormal semen parameters and male infertility, but the impact of ROS on fertilization rates and pregnancy is controversial. This is partly because of the lack of consensus on what type of patients may be suitable for ROS testing and assay standardization. Routine ROS testing for the infertile male is not currently recommended. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
    Fertility and Sterility 11/2014; 102(6). DOI:10.1016/j.fertnstert.2014.10.020 · 4.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sperm must be properly prepared in in vitro fertilization (IVF)-embryo transfer (ET) programs in order to control the fertilization rate and ensure that embryos are of high quality and have appropriate developmental abilities. The objective of this study was to determine the most optimal sperm preparation method for IVF. Patients less than 40 years of age who participated in a fresh IVF-ET cycle from November 2012 to March 2013 were included in this study. Poor responders with less than three mature oocytes were excluded. Ham's F-10 medium or sperm-washing medium (SWM) was used in combination with the density-gradient centrifugation/swim-up (DGC-SUP) or SUP methods for sperm preparation. A total of 429 fresh IVF-ET cycles were grouped according to the media and methods used for sperm preparation and retrospectively analyzed (DGC-SUP/Ham's F-10, n=82; DGC-SUP/SWM, n=43; SUP/Ham's F-10, n=181; SUP/SWM, n=123). There were no significant differences among these four groups with respect to the mean age of the female partners, duration of infertility, number of previous IVF cycles, and retrieved oocytes. We determined that both the DGC-SUP and SUP methods for sperm preparation from whole semen, using either Ham's F-10 or SWM media, result in comparable clinical outcomes, including fertilization and pregnancy rates. We suggest that both media and both methods for sperm preparation can be used for selecting high-quality sperm for assistive reproductive technology programs.
    03/2015; 42(1):22-9. DOI:10.5653/cerm.2015.42.1.22
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress caused by elevated reactive oxygen species (ROS) is one of the predominant causes of both male and female infertility. Oxidative stress conditions cause either cell death or senescence by oxidation of cellular molecules including nucleic acid, proteins, and lipids. It is particularly important to minimize oxidative stress when in vitro fertilization is performed for the purpose of assisted reproduction. The problems associated with assisted reproductive technology are becoming evident, and it is now the time to clarify its mechanisms and cope with them. On the other hand, the beneficial roles of ROS, such as intracellular signaling, have become evident. The antithetical functions of ROS make it more difficult to overcome the problems caused by oxidative stress. Despite the difficulty in understanding mammalian reproduction, the mechanisms and problems can be gradually unveiled by advanced technology such as genetic modification of animals.
    Reproductive Medicine and Biology 04/2013; 13(2):71-79. DOI:10.1007/s12522-013-0170-0

Similar Publications