Article

Tetrabenazine as anti-chorea therapy in Huntington Disease: an open-label continuation study. Huntington Study Group/TETRA-HD Investigators

BMC Neurology (Impact Factor: 2.49). 12/2009; 9:62. DOI: 10.1186/1471-2377-9-62
Source: PubMed

ABSTRACT Tetrabenazine (TBZ) selectively depletes central monoamines by reversibly binding to the type-2 vesicular monoamine transporter. A previous double blind study in Huntington disease (HD) demonstrated that TBZ effectively suppressed chorea, with a favorable short-term safety profile (Neurology 2006;66:366-372). The objective of this study was to assess the long-term safety and effectiveness of TBZ for chorea in HD.
Subjects who completed the 13-week, double blind protocol were invited to participate in this open label extension study for up to 80 weeks. Subjects were titrated to the best individual dose or a maximum of 200 mg/day. Chorea was assessed using the Total Maximal Chorea (TMC) score from the Unified Huntington Disease Rating Scale.
Of the 75 participants, 45 subjects completed 80 weeks. Three participants terminated due to adverse events (AEs) including depression, delusions with associated previous suicidal behavior, and vocal tics. One subject died due to breast cancer. The other 26 subjects chose not to continue on with each ensuing extension for various reasons. When mild and unrelated AEs were excluded, the most commonly reported AEs (number of subjects) were sedation/somnolence (18), depressed mood (17), anxiety (13), insomnia (10), and akathisia (9). Parkinsonism and dysarthria [corrected] scores were significantly increased at week 80 compared to baseline. At week 80, chorea had significantly improved from baseline with a mean reduction in the TMC score of 4.6 (SD 5.5) units. The mean dosage at week 80 was 63.4 mg (range 12.5-175 mg).
TBZ effectively suppresses HD-related chorea for up to 80 weeks. Patients treated chronically with TBZ should be monitored for parkinsonism, dysphagia and other side effects including sleep disturbance, depression, anxiety, and akathisia.
Clinicaltrials.gov registration number (initial study): NCT00219804.

0 Followers
 · 
209 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chorea may contribute to balance problems and walking difficulties that lead to higher fall rates in individuals with Huntington’s disease (HD). Few studies have examined the effects of tetrabenazine (TBZ), an anti-choreic drug, on function and mobility in HD. The purpose of this study was to compare: 1) gait measures in forward walking, 2) balance and mobility measures, and 3) hand and forearm function measures on and off TBZ. We hypothesized that use of TBZ would improve gait, transfers and hand and forearm function. Eleven individuals with HD on stable doses of TBZ were evaluated while off medication and again following resumption of medication. Significant improvements were found on the Unified Huntington’s Disease Rating Scale (UHDRS) motor scores, Tinetti Mobility Test (TMT) total (t = 4.20, p = 0.002) and balance subscale (t = − 4.61, p = 0.001) scores, and the Five Times Sit-to-Stand test (5TSST, t = 3.20, p = .009) when on-TBZ compared to off-TBZ. Spatiotemporal gait measures, the Six Condition Romberg test, and UHDRS hand and forearm function items were not changed by TBZ use. Improved TMT and 5TSST performance when on drug indicates that TBZ use may improve balance and functional mobility in individuals with HD.
    Journal of the Neurological Sciences 10/2014; 347(1-2). DOI:10.1016/j.jns.2014.09.053 · 2.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rationale Depressed people show effort-related motivational symptoms, such as anergia, retardation, lassitude, and fatigue. Animal tests can model these motivational symptoms, and the present studies characterized the effort-related effects of the vesicular monoamine transport (VMAT-2) inhibitor tetrabenazine. Tetrabenazine produces depressive symptoms in humans and, at low doses, preferentially depletes dopamine. Objectives The current studies investigated the effects of tetrabenazine on effort-based decision making using the T-maze barrier task. Methods Rats were tested in a T-maze in which the choice arms of the maze contain different reinforcement densities, and under some conditions, a vertical barrier was placed in the high-density arm to provide an effort-related challenge. The first experiment assessed the effects of tetrabenazine under different maze conditions: a barrier in the arm with 4 food pellets and 2 pellets in the no barrier arm (4-2 barrier), 4 pellets in one arm and 2 pellets in the other with no barrier in either arm (no barrier), and 4 pellets in the barrier arm with no pellets in the other (4-0 barrier). Results Tetrabenazine (0.25-0.75 mg/kg IP) decreased selection of the high cost/high reward arm when the barrier was present, but had no effect on choice under the no barrier and 4-0 barrier conditions. The effects of tetrabenazine on barrier climbing in the 4-2 condition were reversed by the adenosine A2A antagonist MSX-3 and the catecholamine uptake inhibitor and antidepressant bupropion. Conclusions These studies have implications for the development of animal models of the motivational symptoms of depression and other disorders.
    Psychopharmacology 10/2014; 232(7). DOI:10.1007/s00213-014-3766-0 · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Up to date, almost all researchers consider that there is still no effective therapy for neurodegenerative diseases (NDDs) and therefore, these diseases are incurable. However, since May 1998, we know that a progressive ischemia in the medial temporal lobes and subcommissural regions can cause Alzheimer's disease; because, in contrast to this, its revascularization by means of omental tissue can cure or improve this disease. Likewise we observed that the aging process, Huntington's disease, Parkinson's disease, and Amyotrophic lateral sclerosis; all of them are of ischemic origin caused by cerebral atherosclerosis, associated with vascular anomalies and/or environmental chemicals. On the contrary, an omental transplantation on the affected zone can stop and improve these diseases. For these reasons, I believe that NDDs, are wrongly classified as neurodegenerative disorders.

Preview

Download
0 Downloads
Available from