Bayes analysis provides evidence of pathogenicity for the BRCA1 c.135-1G>T (IVS3-1) and BRCA2 c.7977-1G>C (IVS17-1) variants displaying in vitro splicing results of equivocal clinical significance.

Queensland Institute of Medical Research, Brisbane, Australia.
Human Mutation (Impact Factor: 5.21). 12/2009; 31(2):E1141-5. DOI: 10.1002/humu.21181
Source: PubMed

ABSTRACT Although in vitro splicing assays can provide useful information about the clinical interpretation of sequence variants in high-risk cancer genes such as BRCA1 and BRCA2, results can sometimes be difficult to interpret. The BRCA1 c.135-1G>T (IVS3-1G>T) variant has been shown to give rise to an in-frame deletion of exon 5 (BRCA1 c.135_212del) that is predicted to encode 26 amino acids. BRCA2 c.7977-1G>C (IVS17-1G>C) was shown to increase the expression of two naturally occurring transcripts that contain frameshifts (BRCA2, c.7977_8311del (exon 18 deletion); BRCA2, c.7806_8331del (exon 17&18 deletion)). In this study we conducted multifactorial likelihood analysis to evaluate the clinical significance of these two variants, including assessing variant segregation in families by Bayes analysis, and breast tumor pathology features suggestive of positive mutation status. Multifactorial analysis provided strong evidence for causality for both of these variants. The Bayes scores from a single family with BRCA1 c.135-1G>T was 9528:1, and incorporation of pathology features gave an overall likelihood of causality of 28108:1. The Bayes scores from five informative families with BRCA2 c.7977-1G>C was 47401:1, and the combined Bayes-pathology odds of causality was 29389:1. Multifactorial likelihood analysis indicates that the BRCA1 c.135-1G>T and BRCA2 c.7977-1G>C variants are disease-associated mutations which should be managed clinically in the same fashion as classical truncating mutations.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in BRCA1 and BRCA2 predispose carriers to early onset breast and ovarian cancer. A common problem in clinical genetic testing is interpretation of variants with unknown clinical significance. The Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium was initiated to evaluate and implement strategies to characterize the clinical significance of BRCA1 and BRCA2 variants. As an initial project of the ENIGMA Splicing Working Group, we report splicing and multifactorial likelihood analysis of 25 BRCA1 and BRCA2 variants from seven different laboratories. Splicing analysis was performed by reverse transcriptase PCR or mini gene assay, and sequencing to identify aberrant transcripts. The findings were compared to bioinformatic predictions using four programs. The posterior probability of pathogenicity was estimated using multifactorial likelihood analysis, including co-occurrence with a deleterious mutation, segregation and/or report of family history. Abnormal splicing patterns expected to lead to a non-functional protein were observed for 7 variants (BRCA1 c.441+2T>A, c.4184_4185+2del, c.4357+1G>A, c.4987-2A>G, c.5074G>C, BRCA2 c.316+5G>A, and c.8754+3G>C). Combined interpretation of splicing and multifactorial analysis classified an initiation codon variant (BRCA2 c.3G>A) as likely pathogenic, uncertain clinical significance for 7 variants, and indicated low clinical significance or unlikely pathogenicity for another 10 variants. Bioinformatic tools predicted disruption of consensus donor or acceptor sites with high sensitivity, but cryptic site usage was predicted with low specificity, supporting the value of RNA-based assays. The findings also provide further evidence that clinical RNA-based assays should be extended from analysis of invariant dinucleotides to routinely include all variants located within the donor and acceptor consensus splicing sites. Importantly, this study demonstrates the added value of collaboration between laboratories, and across disciplines, to collate and interpret information from clinical testing laboratories to consolidate patient management.
    Breast Cancer Research and Treatment 07/2011; 132(3):1009-23. · 4.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical classification of rare sequence changes identified in the breast cancer susceptibility genes BRCA1 and BRCA2 is essential for appropriate genetic counselling of individuals carrying these variants. We previously showed that variant BRCA1 c.5096G>A p.Arg1699Gln in the BRCA1 transcriptional transactivation domain demonstrated equivocal results from a series of functional assays, and proposed that this variant may confer low to moderate risk of cancer. Measures of genetic risk (report of family history, segregation) were assessed for 68 BRCA1 c.5096G>A p.Arg1699Gln (R1699Q) families recruited through family cancer clinics, comparing results with 34 families carrying the previously classified pathogenic BRCA1 c.5095C>T p.Arg1699Trp (R1699W) mutation at the same residue, and to 243 breast cancer families with no BRCA1 pathogenic mutation (BRCA-X). Comparison of BRCA1 carrier prediction scores of probands using the BOADICEA risk prediction tool revealed that BRCA1 c.5096G>A p.Arg1699Gln variant carriers had family histories that were less 'BRCA1-like' than BRCA1 c.5095C>T p.Arg1699Trp mutation carriers (p<0.00001), but more 'BRCA1-like' than BRCA-X families (p=0.0004). Further, modified segregation analysis of the subset of 30 families with additional genotyping showed that BRCA1 c.5096G >A p.Arg1699Gln had reduced penetrance compared with the average truncating BRCA1 mutation penetrance (p=0.0002), with estimated cumulative risks to age 70 of breast or ovarian cancer of 24%. Our results provide substantial evidence that the BRCA1 c.5096G>A p.Arg1699Gln (R1699Q) variant, demonstrating ambiguous functional deficiency across multiple assays, is associated with intermediate risk of breast and ovarian cancer, highlighting challenges for risk modelling and clinical management of patients of this and other potential moderate-risk variants.
    Journal of Medical Genetics 08/2012; 49(8):525-32. · 5.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Oculocutaneous albinism type 2 (OCA2) is caused by mutations of the OCA2 gene. Individuals affected by OCA2 as well as other types of albinism are at a significantly increased risk for sun-induced skin-cancers, including malignant melanoma (MM). OBJECTIVE: To identify the molecular etiology of oculocutaneous albinism in a previously uncharacterized melanoma pedigree and to investigate the relationship between two OCA2 variants and melanoma predisposition in this pedigree. METHODS: DNA and RNA were isolated from the peripheral blood of seven patients in a familial melanoma pedigree. Electron microscopy was performed on the individual with clinical oculocutaneous albinism. OCA2, TYRP1, MC1R, CDKN2A/p16, CDKN2A/p19ARF, and CDK4 genes were sequenced in affected individuals. The relationship between OCA2 variants and melanoma was assessed using a pedigree likelihood-based method. RESULTS: The proband was determined to be an OCA2 compound heterozygous mutation carrier with a previously reported conservative missense mutation (V443I) and a novel non-conservative missense mutation (L734R). The pedigree contained individuals diagnosed with both cutaneous and iris melanoma. Based on co-segregation analysis, the odds of these OCA2 variants being high penetrance loci for melanoma was: 1.3-to-1 if we include the iris melanoma as affected and 6.5-to-1 if we only consider cutaneous melanoma as affected. CONCLUSION: The discovery of this novel OCA2 variant adds to the body of evidence on the detrimental effects of OCA2 gene mutations on pigmentation, supports existing GWAS data on the relevance of the OCA2 gene in melanoma predisposition, and may ultimately assist in the development of targeted molecular therapies in the treatment of OCA and melanoma.
    Journal of dermatological science 10/2012; · 3.71 Impact Factor


1 Download
Available from