RACK1: A superior independent predictor for poor clinical outcome in breast cancer.

Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China.
International Journal of Cancer (Impact Factor: 6.2). 12/2009; 127(5):1172-9. DOI: 10.1002/ijc.25120
Source: PubMed

ABSTRACT We aimed to investigate the expression of RACK1 in breast cancer, evaluate its role in predicting prognosis and compare with commonly used biomarkers: Ki67, ER, PR and HER-2 for patients with breast cancer. The RACK1 expression and its clinical significance were examined in 160 breast carcinoma patients using immunohistochemistry. Correlations of RACK1 expression with other commonly used biomarkers and survival analyses were assessed. Immunohistochemistry results showed that the number of RACK1 cases scoring 0, 1, and 2 were 66, 54, and 40, respectively. RACK1 staining was strongly related to clinical stage, histological grade, Ki67, ER, PR and HER-2 (all p < 0.05). Consistently, all of the cases exhibiting RACK1 staining score 0 were survivors, whereas the majority (55.0%) of those exhibiting RACK1 staining score 2 were deaths. Kaplan-Meier survival analysis of 160 cases revealed a correlation between higher RACK1 expression levels and shorter overall survival times (p < 0.001). Univariate and multivariate analyses revealed that RACK1, tumor size, lymph node metastasis, and HER-2 were independent prognostic factors (all p < 0.05). Interestingly, receiver operator characteristic (ROC) curves showed that the ROC areas for RACK1, Ki67, ER, PR and HER-2 were 0.833, 0.766, 0.446, 0.387, and 0.689, respectively, and the superiority of RACK1 in sensitivity and specificity as biomarker was demonstrated. To our knowledge, it is the first time to investigate the expression of RACK1, and identified that RACK1 is a superior independent biomarker for diagnosis and prognosis comparing with currently widely used diagnostic index in breast carcinoma.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The receptor for activated C kinase 1 (RACK1) serves as an adaptor for a number of proteins along the MAPK, protein kinase C, and Src signaling pathways. The abundance and near ubiquitous expression of RACK1 reflect its role in coordinating signaling molecules for many critical biological processes, from mRNA translation to cell motility to cell survival and death. Complete deficiency of Rack1 is embryonic lethal, but the recent development of genetic Rack1 hypomorphic mice has highlighted the central role that RACK1 plays in cell movement and protein synthesis. This review focuses on the importance of RACK1 in these processes and places the recent work in the larger context of understanding RACK1 function.
    Genes & cancer 09/2013; 4(9-10):369-377.
  • [Show abstract] [Hide abstract]
    ABSTRACT: RACK1 is a member of the WD repeat family of proteins and is involved in multiple fundamental cellular processes. An intriguing feature of RACK1 is its ability to interact with at least 80 different protein partners. Thus, the structural features enabling such interactomic flexibility are of great interest. Several previous studies of the crystal structures of RACK1 orthologs described its detailed architecture and confirmed predictions that RACK1 adopts a seven-bladed β-propeller fold. However, this did not explain its ability to bind to multiple partners. We performed hydrogen-deuterium (H-D) exchange mass spectrometry on three orthologs of RACK1 (human, yeast, and plant) to obtain insights into the dynamic properties of RACK1 in solution. All three variants retained similar patterns of deuterium uptake, with some pronounced differences that can be attributed to RACK1's divergent biological functions. In all cases, the most rigid structural elements were confined to B-C turns and, to some extent, strands B and C, while the remaining regions retained much flexibility. We also compared the average rate constants for H-D exchange in different regions of RACK1 and found that amide protons in some regions exchanged at least 1000-fold faster than in others. We conclude that its evolutionarily retained structural architecture might have allowed RACK1 to accommodate multiple molecular partners. This was exemplified by our additional analysis of yeast RACK1 dimer, which showed stabilization, as well as destabilization, of several interface regions upon dimer formation.
    Protein Science 03/2014; · 2.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RACK1/Asc1p and its essential orthologues in higher eukaryotes, as e.g. RACK1 in metazoa, are involved in several distinct cellular signaling processes. The implications of a total deletion have never been assessed in a comprehensive manner. This study reveals the major cellular processes affected in a Saccharomyces cerevisiae Δasc1 deletion background via de novo proteome and transcriptome analysis, as well as subsequent phenotypical characterizations. The deletion of ASC1 reduces iron-uptake and causes nitrosative stress, both known indicators for hypoxia, which manifests in a shift of energy metabolism from respiration to fermentation in the Δasc1 strain. Asc1p further impacts cellular metabolism by its regulative role in the MAP kinase signal transduction pathways of invasive/filamentous growth and cell wall integrity. In the Δasc1 mutant strain aberrations from the expected cellular response, mediated by these pathways, can be observed and are linked to changes in protein abundances of pathway-targeted transcription factors. Evidence for the translational regulation of such transcription factors suggests that ribosomal Asc1p is involved in signal transduction pathways by controlling the biosynthesis of the respective final transcriptional regulators.
    Molecular &amp Cellular Proteomics 10/2012; · 7.25 Impact Factor