Article

Identification of an Arabidopsis Nodulin-related protein in heat stress.

Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, People's Republic of China.
Molecules and Cells (Impact Factor: 2.21). 12/2009; 29(1):77-84. DOI:10.1007/s10059-010-0005-3
Source: PubMed

ABSTRACT We identified a Nodulin-related protein 1 (NRP1) encoded by At2g03440, which was previously reported to be RPS2 interacting protein in yeast-two-hybrid assay. Northern blotting showed that AtNRP1 expression was suppressed by heat stress (42 degrees C) and induced by low temperature (4 degrees C) treatment. Strong GUS staining was observed in the sites of meristematic tissues of pAtNRP1:: GUS transgenic plants, such as shoot apex and root tips, young leaf veins, stamens and stigmas of flowers, and abscission layers of young siliques. To study AtNRP1 biological functions, we have characterized both loss-of-function T-DNA insertion and transgenic overexpression plants for AtNRP1 in Arabidopsis. The T-DNA insertion mutants displayed no obvious difference as compared to wild-type Arabidopsis under heat stress, but the significant enhanced susceptibility to heat stress was revealed in two independent AtNRP1-overexpressing transgenic lines. Further study found that the decreased thermotolerance in AtNRP1-overexpressing lines accompanied significantly decreased accumulation of ABA after heat treatment, which was probably due to AtNRP1 playing a role in negative-feedback regulation of the ABA synthesis pathway. These results support the viewpoint that the application of ABA inhibits nodulation and nodulin-related gene expression and threaten adverse ambient temperature can impact the nodulin-related gene expression.

0 0
 · 
0 Bookmarks
 · 
70 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Arabidopsis thaliana WRKY39, a transcription factor that is induced by heat stress, is a member of the group II WRKY proteins and responds to both abiotic and biotic stress. Heat-treated seeds and plants of WRKY39 knock-down mutants had increased susceptibility to heat stress, showing reduced germination, decreased survival, and elevated electrolyte leakage compared with wild-type plants. In contrast, WRKY39 over-expressing plants exhibited enhanced thermotolerance compared with wild-type plants. RT-PCR and qRT-PCR analysis of wrky39 mutants and WRKY39 over-expressing plants identified putative genes regulated by WRKY39. Consistent with a role for WRKY39 in heat tolerance, the expression levels of salicylic acid (SA)-regulated PR1 and SA-related MBF1c genes were downregulated in wrky39 mutants. In contrast, over-expression of WRKY39 increased the expression of PR1 and MBF1c. The WRKY39 transcript was induced in response to treatment with SA or methyljasmonate. Analysis of heat stress-induced WRKY39 in defense signaling mutants, including coi1, ein2, and sid2, further indicated that WRKY39 was positively co-regulated by the SA and jasmonate (JA) signaling pathways. Together, these findings reveal that heat stress-induced WRKY39 positively regulates the cooperation between the SA- and JA-activated signaling pathways that mediate responses to heat stress.
    Molecules and Cells 05/2010; 29(5):475-83. · 2.21 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A DnaJ-like gene, Cpdj1, a molecular chaperone and regulator of Hsp70 in Cryphonectria parasitica, was characterized. The protein product of Cpdj1 gene consists of 379 amino acids with a predicted molecular mass of 40.6 kDa and a pI of 7.79. The deduced protein sequence revealed preservation of the conserved hall-mark J-region and exhibited high homolo y to all known DnaJ-like proteins. Disruption of the Cpdj1 gene resulted in slow growth and produced colonies characterized by retarded growth and deep orange color. Accordingly, reduced virulence of the Cpdj1-null mutant was observed. This reduced growth rate was magnified when the Cpdj1-null mutant was cultured under heat-stress conditions. Reduced conidiation was also observed in the Cpdj1-null mutant, indicating that Cpdj1 gene, although not essential for cell viability, is required for appropriate cellular processes including growth and sporulation. Northern analysis showed that Cpdj1 was constitutively expressed, and when the culture was subject to high temperature, a strong induction of the transcript was observed. No significant difference in the expression and induction pattern of Cpdj1 was observed between virus-free EP155/2 and virus-infected hypovirulent UEP1 strains. However, further severe defects in mycelia growth and conidiation were observed in the hypovirus-infected Cpdj1-null mutant suggesting that the presence of Cpdj1 is required for mycelia growth and sporulation of the hypovirus-infected strain.
    Molecules and Cells 09/2010; 30(3):235-43. · 2.21 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The growth and development of plants are influenced by the integration of diverse endogenous and environmental signals. Acting as a mediator of extrinsic signals, the stress hormone, abscisic acid (ABA), has been shown to regulate many aspects of plant development in response to unfavourable environmental stresses, allowing the plant to cope and survive in adverse conditions, such as drought, low or high temperature, or high salinity. Here, we summarize recent evidence on the roles of ABA in environmental stress responses in the Arabidopsis root; and on how ABA crosstalks with other phytohormones to modulate root development and growth in Arabidopsis. We also review literature findings showing that, in response to environmental stresses, ABA affects the root system architecture in other plant species, such as rice.
    Plant Cell Reports 04/2013; · 2.51 Impact Factor

Full-text

View
1 Download
Available from

Qiantang Fu