Article

Genomewide association analysis of respiratory syncytial virus infection in mice.

Department of Pediatrics, University of Texas Health Science Center, Houston, Texas, USA.
Journal of Virology (Impact Factor: 4.65). 12/2009; 84(5):2257-69. DOI: 10.1128/JVI.00584-09
Source: PubMed

ABSTRACT Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infection in infants, with about half being infected in their first year of life. Yet only 2 to 3% of infants are hospitalized for RSV infection, suggesting that individual susceptibility contributes to disease severity. Previously, we determined that AKR/J (susceptible) mice developed high lung RSV titers and showed delayed weight recovery, whereas C57BL/6J (resistant) mice demonstrated low lung RSV titers and rapid weight recovery. In addition, we have reported that gene-targeted mice lacking the cystic fibrosis transmembrane conductance regulator (Cftr; ATP-binding cassette subfamily C, member 7) are susceptible to RSV infection. For this report, recombinant backcross and F2 progeny derived from C57BL/6J and AKR/J mice were infected with RSV, their lung titers were measured, and quantitative trait locus (QTL) analysis was performed. A major QTL, designated Rsvs1, was identified on proximal mouse chromosome 6 in both recombinant populations. Microarray analysis comparing lung transcripts of the parental strains during infection identified several candidate genes that mapped to the Rsvs1 interval, including Cftr. These findings add to our understanding of individual RSV susceptibility and strongly support a modifier role for CFTR in RSV infection, a significant cause of respiratory morbidity in infants with cystic fibrosis.

0 Bookmarks
 · 
123 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: While the role of viral variants has long been known to play a key role in causing variation in disease severity, it is also clear that host genetic variation plays a critical role in determining virus-induced disease responses. However, a variety of factors, including confounding environmental variables, rare genetic variants requiring extremely large cohorts, the temporal dynamics of infections, and ethical limitation on human studies, have made the identification and dissection of variant host genes and pathways difficult within human populations. This difficulty has led to the development of a variety of experimental approaches used to identify host genetic contributions to disease responses. In this chapter, we describe the history of genetic associations within the human population, the development of experimentally tractable systems, and the insights these specific approaches provide. We conclude with a discussion of recent advances that allow for the investigation of the role of complex genetic networks that underlie host responses to infection, with the goal of drawing connections to human infections. In particular, we highlight the need for robust animal models with which to directly control and assess the role of host genetics on viral infection outcomes.
    Advances in Virus Research 01/2014; 88:193-225. DOI:10.1016/B978-0-12-800098-4.00004-0 · 3.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory syncytial virus (RSV) is amongst the most important pathogenic infections of childhood and is associated with significant morbidity and mortality. Although there have been extensive studies of epidemiology, clinical manifestations, diagnostic techniques, animal models and the immunobiology of infection, there is not yet a convincing and safe vaccine available. The major histopathologic characteristics of RSV infection are acute bronchiolitis, mucosal and submucosal edema, and luminal occlusion by cellular debris of sloughed epithelial cells mixed with macrophages, strands of fibrin, and some mucin. There is a single RSV serotype with two major antigenic subgroups, A and B. Strains of both subtypes often co-circulate, but usually one subtype predominates. In temperate climates, RSV infections reflect a distinct seasonality with onset in late fall or early winter. It is believed that most children will experience at least one RSV infection by the age of 2 years. There are several key animal models of RSV. These include a model in mice and, more importantly, a bovine model; the latter reflects distinct similarity to the human disease. Importantly, the prevalence of asthma is significantly higher amongst children who are hospitalized with RSV in infancy or early childhood. However, there have been only limited investigations of candidate genes that have the potential to explain this increase in susceptibility. An atopic predisposition appears to predispose to subsequent development of asthma and it is likely that subsequent development of asthma is secondary to the pathogenic inflammatory response involving cytokines, chemokines and their cognate receptors. Numerous approaches to the development of RSV vaccines are being evaluated, as are the use of newer antiviral agents to mitigate disease. There is also significant attention being placed on the potential impact of co-infection and defining the natural history of RSV. Clearly, more research is required to define the relationships between RSV bronchiolitis, other viral induced inflammatory responses, and asthma.
    Clinical Reviews in Allergy & Immunology 04/2013; DOI:10.1007/s12016-013-8368-9 · 4.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms generating epileptic neuronal networks following insults such as severe seizures are unknown. We have previously shown that interfering with the function of the neuron-restrictive silencer factor (NRSF/REST), an important transcription factor that influences neuronal phenotype, attenuated development of this disorder. In this study, we found that epilepsy-provoking seizures increased the low NRSF levels in mature hippocampus several fold yet surprisingly, provoked repression of only a subset (∼10%) of potential NRSF target genes. Accordingly, the repressed gene-set was rescued when NRSF binding to chromatin was blocked. Unexpectedly, genes selectively repressed by NRSF had mid-range binding frequencies to the repressor, a property that rendered them sensitive to moderate fluctuations of NRSF levels. Genes selectively regulated by NRSF during epileptogenesis coded for ion channels, receptors, and other crucial contributors to neuronal function. Thus, dynamic, selective regulation of NRSF target genes may play a role in influencing neuronal properties in pathological and physiological contexts.DOI: http://dx.doi.org/10.7554/eLife.01267.001.
    eLife Sciences 08/2014; 3:e01267. DOI:10.7554/eLife.01267 · 8.52 Impact Factor

Full-text (2 Sources)

Download
45 Downloads
Available from
May 28, 2014