Article

From meiosis to postmeiotic events: alignment and recognition of homologous chromosomes in meiosis.

Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Kobe, Japan.
FEBS Journal (Impact Factor: 4.25). 12/2009; 277(3):565-70. DOI: 10.1111/j.1742-4658.2009.07501.x
Source: PubMed

ABSTRACT Recombination of homologous chromosomes is essential for correct reductional segregation of homologous chromosomes, which characterizes meiosis. To accomplish homologous recombination, chromosomes must find their homologous partners and pair with them within the spatial constraints of the nucleus. Although various mechanisms have developed in different organisms, two major steps are involved in the process of pairing: first, alignment of homologous chromosomes to bring them close to each other for recognition; and second, recognition of the homologous partner of each chromosome so that they can form an intimate pair. Here, we discuss the various mechanisms used for alignment and recognition of homologous chromosomes in meiosis.

1 Bookmark
 · 
86 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Meiosis is the specialised eukaryotic cell division that permits the halving of ploidy necessary for gametogenesis in sexually reproducing organisms. This involves a single round of DNA replication followed by two successive divisions. To ensure balanced segregation, homologous chromosome pairs must migrate to opposite poles at the first meiotic division and this means that they must recognise and pair with each other beforehand. Although understanding of the mechanisms by which meiotic chromosomes find and pair with their homologues has greatly advanced, it remains far from being fully understood. With some notable exceptions such as male Drosophila, the recognition and physical linkage of homologues at the first meiotic division involves homologous recombination. However, in addition to this, it is clear that many organisms, including plants, have also evolved a series of recombination-independent mechanisms to facilitate homologue recognition and pairing. These implicate chromosome structure and dynamics, telomeres, centromeres and most recently, small RNAs. With a particular focus on plants, we present here an overview of understanding of these early, recombination-independent events that act in the pairing of homologous chromosomes during the first meiotic division.
    Molecular Plant 12/2013; · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transfer of genetic traits from wild or related species into cultivated rice is nowadays an important aim in rice breeding. Breeders use genetic crosses to introduce desirable genes from exotic germplasms into cultivated rice varieties. However, in many hybrids there is only a low level of pairing (if existing) and recombination at early meiosis between cultivated rice and wild relative chromosomes. With the objective of getting deeper into the knowledge of the proteins involved in early meiosis, when chromosomes associate correctly in pairs and recombine, the proteome of isolated rice meiocytes has been characterized by nLC-MS/MS at every stage of early meiosis (prophase I). Up to 1316 different proteins have been identified in rice isolated meiocytes in early meiosis, being 422 exclusively identified in early prophase I (leptotene, zygotene, or pachytene). The classification of proteins in functional groups showed that 167 were related to chromatin structure and remodeling, nucleic acid binding, cell-cycle regulation, and cytoskeleton. Moreover, the putative roles of 16 proteins which have not been previously associated to meiosis or were not identified in rice before, are also discussed namely: seven proteins involved in chromosome structure and remodeling, five regulatory proteins [such as SKP1 (OSK), a putative CDK2 like effector], a protein with RNA recognition motifs, a neddylation-related protein, and two microtubule-related proteins. Revealing the proteins involved in early meiotic processes could provide a valuable tool kit to manipulate chromosome associations during meiosis in rice breeding programs. The data have been deposited to the ProteomeXchange with the PXD001058 identifier.
    Frontiers in Plant Science 01/2014; 5:356. · 3.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Meiotic prophase I (MPI), is an initial stage of meiosis characterized by intricate homologous chromosome interactions, synapsis, and DNA recombination. These processes depend on the complex, but poorly understood early MPI events of homologous chromosome search, alignment, and pairing. Detailed molecular investigation of these early events requires isolation of individual MPI substages. Enrichment for Pachytene (P) and Diplotene (D) substages of late MPI was previously accomplished using flow cytometry. However, separation of early MPI spermatocytes, specifically, of Leptotene (L) and Zygotene (Z) substages, has been a challenge due to these cells' similar characteristics. In this report, we describe an optimized Hoechst-33342 (Hoechst)-based flow cytometry approach for isolating individual MPI populations from adult mouse testis. We get significant enrichment for individual L and Z spermatocytes, previously inseparable from each other, and optimize the isolation of other MPI substages. Our flow cytometry approach is a combination of three optimized strategies. The first is optimization of testis dissociation protocol that yields more consistent and reproducible testicular single cell suspension. The second involves optimization of flow cytometric gating protocol where a critical addition to the standard protocol for cell discrimination based on Hoechst fluorescence, involves a back-gating technique based on light scattering parameters. This step specifies selection of individual MPI substages. The third, is an addition of DNA content restriction to the gating protocol to minimize contamination from non-meiotic cells. Finally, we confirm significant enrichment of high-purity Preleptotene (PreL), L, Z, P, and D MPI spermatocytes using stage-specific marker distribution. The technique will facilitate understanding of the molecular events underlying MPI. © 2014 International Society for Advancement of Cytometry.
    Cytometry Part A 03/2014; · 3.71 Impact Factor

Full-text

View
0 Downloads