Article

From manganism to manganese-induced parkinsonism: a conceptual model based on the evolution of exposure.

Department of Experimental and Applied Medicine, Section of Occupational Health and Industrial Hygiene, University of Brescia, Brescia, Italy.
Neuromolecular medicine (Impact Factor: 5). 12/2009; 11(4):311-21. DOI: 10.1007/s12017-009-8108-8
Source: PubMed

ABSTRACT Manganism is a distinct medical condition from Parkinson's disease. Manganese exposure scenarios in the last century generally have changed from the acute, high-level exposure conditions responsible for the occurrence of manganism to chronic exposure to much lower levels. Such chronic exposures may progressively extend the site of manganese deposition and toxicity from the globus pallidus to the entire area of the basal ganglia, including the substantia nigra pars compacta involved in Parkinson's disease. The mechanisms of manganese neurotoxicity from chronic exposure to very low levels are not well understood, but promising information is based on the concept of susceptibility that may place individuals exposed to manganese at a higher risk for developing Parkinsonian disturbances. These conditions include mutations of genes which play important pathogenetic roles in both Parkinsonism and in the regulation of manganese transport and metabolism. Liver function is also important in manganese-related neurotoxicity and sub-clinical impairment may increase the risk of Parkinsonism. The purpose and scope of this report are to explore the literature concerning manganese exposure and potential subclinical effects and biological pathways, impairment, and development of diseases such as Parkinsonism and manganism. Inhalation and ingestion of manganese will be the focus of this report.

1 Bookmark
 · 
285 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Manganese (Mn) is one of the most abundant metals on the earth. It is required for normal cellular activities, but overexposure leads to toxicity. Neurons are more susceptible to Mn-induced toxicity than other cells, and accumulation of Mn in the brain results in Manganism that presents with Parkinson’s disease (PD)-like symptoms. In the last decade, a number of Mn transporters have been identified, which improves our understanding of Mn transport in and out of cells. However, the mechanism of Mn-induced neurotoxicity is only partially uncovered, with further research needed to explore the whole picture of Mn-induced toxicity. In this review, we will address recent progress in Mn-induced neurotoxicity from C. elegans to humans, and explore future directions that will help understand the mechanisms of its neurotoxicity.
    11/2014; DOI:10.1039/C4TX00127C
  • [Show abstract] [Hide abstract]
    ABSTRACT: Manufacturing of manganese (Mn) compounds, their industrial applications as well as mining overburden, has generated a potential environmental pollutant. Occupational exposure to elevated levels of Mn occurs during mining, welding, smelting and other industrial anthropogenic sources. Chronic and acute exposure of this metal pollutant leads to adverse consequences and is clinically categorized by various symptoms of neurotoxicity including cognitive, psychiatric symptoms, Parkinson's disease, extra pyramidal signs, manganism, dystonia, and motor system dysfunction. The aim of this review is to summarize the possible mechanism underlying Mn compounds-mediated neurotoxicity leading to neurodegenerative diseases. Our review endeavours to examine recent advances in research on Mn-related environmental pollution, Mn-induced poisoning, molecular mechanisms underlying Mn-induced neurotoxicity with case studies as well as current approaches employed for treatment and prevention of Mn exposure.
    Toxicological and Environmental Chemistry 02/2015; 96(7). DOI:10.1080/02772248.2015.1005428 · 0.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Manganese (Mn) is an essential metal commonly found in the environment and is used for industrial purposes. Exposure to excessively high Mn levels may induce neurotoxicity referred to as manganism. This work was conducted to study the effect of manganese on the olfactory bulb of adult male albino rat and the possible protective role of meloxicam. Forty adult male albino rats were equally divided into four groups; control group, meloxicam-treated group (5 mg/kg/day orally for 4 weeks), MnCl2-treated group (10 mg/kg/day orally for 4 weeks), and the fourth group received both meloxicam and MnCl2 at the same doses and duration. Specimens of the olfactory bulbs were prepared for light and electron microscopy. An immunohistochemical study with a quantitative morphometry was performed using antibodies against glial fibrillary acidic protein (GFAP). The control group and meloxicam-treated group showed the same normal structure. MnCl2-treated group showed shrinkage of mitral nerve cells with dark peripheral nuclei as well as disorganization of mitral and granule nerve cells. The surrounding neuropil showed vacuolar spaces. Ultrastructurally, the mitral cells showed accumulation of lysosomes, swelling of mitochondria and irregularity of the nuclei. The nerve fibers contained swollen mitochondria with splitting and irregularity of the surrounding myelin sheaths. GFAP immunoreaction showed a highly significant increase compared to control group. On the other hand, the group that received both meloxicam and MnCl2 showed less marked histological changes. It was concluded that manganese induced structural changes in the olfactory bulb of albino rat that were ameliorated by concomitant use of meloxicam.
    11/2014; 3(1). DOI:10.1016/j.jmau.2014.11.002

Full-text

Download
111 Downloads
Available from
May 16, 2014