Article

Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex.

Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232, USA.
Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism (Impact Factor: 5.34). 12/2009; 30(4):744-56. DOI: 10.1038/jcbfm.2009.253
Source: PubMed

ABSTRACT Preconditioning describes the ischemic stimulus that triggers an endogenous, neuroprotective response that protects the brain during a subsequent severe ischemic injury, a phenomenon known as 'tolerance'. Ischemic tolerance requires new protein synthesis, leads to genomic reprogramming of the brain's response to subsequent ischemia, and is transient. MicroRNAs (miRNAs) regulate posttranscriptional gene expression by exerting direct effects on messenger RNA (mRNA) translation. We examined miRNA expression in mouse cortex in response to preconditioning, ischemic injury, and tolerance. The results of our microarray analysis revealed that miRNA expression is consistently altered within each group, but that preconditioning was the foremost regulator of miRNAs. Our bioinformatic analysis results predicted that preconditioning-regulated miRNAs most prominently target mRNAs that encode transcriptional regulators; methyl-CpG binding protein 2 (MeCP2) was the most prominent target. No studies have linked MeCP2 to preconditioning or tolerance, yet miR-132, which regulates MeCP2 expression, is decreased in preconditioned cortex. Downregulation of miR-132 is consistent with our finding that preconditioning ischemia induces a rapid increase in MeCP2 protein, but not mRNA, in mouse cortex. These studies reveal that ischemic preconditioning regulates expression of miRNAs and their predicted targets in mouse brain cortex, and further suggest that miRNAs and MeCP2 could serve as effectors of ischemic preconditioning-induced tolerance.

Download full-text

Full-text

Available from: Giuseppe Pignataro, Feb 12, 2014
0 Followers
 · 
93 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radial glial progenitors play pivotal roles in the development and patterning of the spinal cord, and their fate is controlled by Notch signaling. How Notch is shaped to regulate their crucial transition from expansion toward differentiation remains, however, unknown. miR-132 in the developing zebrafish dampens Notch signaling via a cascade involving the transcriptional corepressor Ctbp2 and the Notch suppressor Sirt1. At early embryonic stages, high Ctbp2 levels sustain Notch signaling and radial glial expansion and concomitantly induce miR-132 expression via a double-negative feedback loop involving Rest inhibition. The changing balance in miR-132 and Ctbp2 interaction gradually drives the switch in Notch output and radial glial progenitor fate as part of the larger developmental program involved in the transition from embryonic to larval spinal cord.
    Developmental Cell 08/2014; 30(4). DOI:10.1016/j.devcel.2014.07.006 · 10.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are small non-coding RNAs that regulate post-transcriptional gene expression. In the short time since the discovery of microRNAs, the literature has burgeoned with studies focused on the biosynthesis of microRNAs, target prediction and binding, and mechanisms of translational repression by microRNAs. Given the prominent role of microRNAs in all areas of cell biology, it is not surprising that microRNAs are also linked to human diseases, including those of the nervous system. One of the least-studied areas of microRNA research is how their expression is regulated outside of development and cancer. Thus, we examined a role for regulation of microRNAs by neurotransmitter receptor activation in mouse brain. We focused on the group I metabotropic glutamate receptors by using intracerebroventricular injection of the selective agonist, (S)-3,5-dihydroxyphenylglycine (DHPG) in mouse brain. We then examined the expression of microRNAs in the cerebral cortex by Ambion and Invitrogen microarrays, and the expression of mature microRNA sequences by SABiosciences qPCR arrays, at 4, 8 and 24 h after DHPG injection. These studies revealed that the largest number of significantly regulated microRNAs was detected 8h after DHPG injection in the microarrays and qPCR arrays. We then used RNA blots to quantify microRNA expression, and in situ hybridization to examine cellular distribution of the microRNAs regulated by DHPG. Bioinformatic analysis of the microRNAs regulated 8 h after DHPG in all three arrays revealed KEGG pathways that are known to correlate with group I mGluR effects, as well as recently described and novel pathways. These studies are the first to show that DHGP regulates the expression of microRNAs in mouse cerebral cortex, and support the hypothesis that group I mGluRs may regulate microRNA expression in mouse brain.
    Experimental Neurology 01/2012; 235(2):497-507. DOI:10.1016/j.expneurol.2012.01.018 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported the involvement of conventional protein kinase C (cPKC) βII, γ, novel PKC (nPKC) ε and their interacting proteins in hypoxic pre-conditioning (HPC)-induced neuroprotection. In this study, the large-scale miRNA microarrays and bioinformatics analysis were used to determine the differentially expressed miRNAs and their PKC-isoform specific gene network in mouse brain after HPC and 6 h middle cerebral artery occlusion (MCAO). We found 4 up-regulated and 13 down-regulated miRNAs in the cortex of HPC mice, 26 increased and 39 decreased gene expressions of miRNAs in the peri-infarct region of 6 h MCAO mice, and 11 up-regulated and 22 down-regulated miRNAs in the peri-infarct region of HPC and 6 h MCAO mice. Based on Diff Score, 19 differentially expressed miRNAs were identified in HPC and 6 h MCAO mouse brain. Then the miRNA-gene-network of 19 specified miRNAs target genes of cPKCβII, γ and nPKCε-interacting protein was predicted by using bioinformatics analysis of genome databases. Furthermore, the down-regulated miR-615-3p during HPC had a detrimental effect on the oxygen-glucose deprivation (OGD)-induced N2A cell injury. These results suggested that the identified 19 miRNAs, notably miR-615-3p, might target these genes of cPKCβII, γ and nPKCε-interacting proteins involved in HPC-induced neuroprotection.
    Journal of Neurochemistry 12/2011; 120(5):830-41. DOI:10.1111/j.1471-4159.2011.07624.x · 4.24 Impact Factor