Article

Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function.

Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA.
Nature Genetics (Impact Factor: 29.65). 12/2009; 42(1):45-52. DOI: 10.1038/ng.500
Source: PubMed

ABSTRACT Spirometric measures of lung function are heritable traits that reflect respiratory health and predict morbidity and mortality. We meta-analyzed genome-wide association studies for two clinically important lung-function measures: forced expiratory volume in the first second (FEV(1)) and its ratio to forced vital capacity (FEV(1)/FVC), an indicator of airflow obstruction. This meta-analysis included 20,890 participants of European ancestry from four CHARGE Consortium studies: Atherosclerosis Risk in Communities, Cardiovascular Health Study, Framingham Heart Study and Rotterdam Study. We identified eight loci associated with FEV(1)/FVC (HHIP, GPR126, ADAM19, AGER-PPT2, FAM13A, PTCH1, PID1 and HTR4) and one locus associated with FEV(1) (INTS12-GSTCD-NPNT) at or near genome-wide significance (P < 5 x 10(-8)) in the CHARGE Consortium dataset. Our findings may offer insights into pulmonary function and pathogenesis of chronic lung disease.

0 Bookmarks
 · 
133 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic obstructive pulmonary disease (COPD) is a major and an increasingly prevalent health problem worldwide. It has been reported that genetic variation may play a role in the development and severity of COPD. The purpose of this study was to investigate whether single nucleotide polymorphisms in multiple genetic variants were associated with COPD in a Chinese population from Hainan province. In this case-control study, including 200 COPD patients and 401 controls, we genotyped 14 tag single nucleotide polymorphisms and evaluated their association with COPD using the χ (2) test and genetic model analysis. The polymorphism, rs10007052, in the RNF150 gene was significantly associated with COPD risk at a 5% level (odds ratio =1.43, 95% confidence interval, 1.06-1.95, P=0.020). In the log-additive model, the minor allele (C) of rs10007052 in the RNF150 gene (P=0.026) and the minor allele (C) of rs3733829 in the EGLN2 gene (P=0.037) were associated with COPD risk after adjustment for age, sex, and smoking status. Further haplotype analysis revealed that the "CT" haplotype composed of the mutant allele (C) of rs7937, rs3733829 in the EGLN2 gene, was associated with increased COPD risk (odds ratio =1.55; 95% confidence interval, 1.05-2.31; P=0.029). Our findings indicated that rs10007052 in the RNF150 and rs3733829 in the EGLN2 gene were significantly associated with the risk of COPD in Chinese populations of Hainan province. These data may provide novel insights into the pathogenesis of COPD, although further studies with larger numbers of participants worldwide are needed for validation of our conclusions.
    International Journal of COPD 01/2015; 10:145-51. DOI:10.2147/COPD.S73031
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The HHIP gene, encoding Hedgehog interacting protein, has been implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS), and our subsequent studies identified a functional upstream genetic variant that decreased HHIP transcription. However, little is known about how HHIP contributes to COPD pathogenesis. We exposed Hhip haploinsufficient mice (Hhip (+/-) ) to cigarette smoke (CS) for 6 months to model the biological consequences caused by CS in human COPD risk-allele carriers at the HHIP locus. Gene expression profiling in murine lungs was performed followed by an integrative network inference analysis, PANDA (Passing Attributes between Networks for Data Assimilation) analysis. We detected more severe airspace enlargement in Hhip (+/-) mice vs. wild-type littermates (Hhip (+/+) ) exposed to CS. Gene expression profiling in murine lungs suggested enhanced lymphocyte activation pathways in CS-exposed Hhip (+/-) vs. Hhip (+/+) mice, which was supported by increased numbers of lymphoid aggregates and enhanced activation of CD8+ T cells after CS-exposure in the lungs of Hhip (+/-) mice compared to Hhip (+/+) mice. Mechanistically, results from PANDA network analysis suggested a rewired and dampened Klf4 signaling network in Hhip (+/-) mice after CS exposure. In summary, HHIP haploinsufficiency exaggerated CS-induced airspace enlargement, which models CS-induced emphysema in human smokers carrying COPD risk alleles at the HHIP locus. Network modeling suggested rewired lymphocyte activation signaling circuits in the HHIP haploinsufficiency state.
    Genome Medicine 12/2015; 7(1):12. DOI:10.1186/s13073-015-0137-3 · 4.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reduced forced expiratory volume in 1 second (FEV1) and the ratio of FEV1 to forced vital capacity (FVC) are strong predictors of mortality and lung function is higher among individuals with exceptional longevity. However, genetic factors associated with lung function in individuals with exceptional longevity have not been identified. We conducted a genome wide association study (GWAS) to identify novel genetic variants associated with lung function in the Long Life Family Study (LLFS) (n = 3,899). Replication was performed using data from the CHARGE/SpiroMeta consortia. The association between SNPs and FEV1 and FEV1/FVC was analyzed using a linear mixed effects model adjusted for age, age2, sex, height, field center, ancestry principal components and kinship structure to adjust for family relationships separately for ever smokers and never smokers. In the linkage analysis, we used the residuals of the FEV1 and FEV1/FVC, adjusted for age, sex, height, ancestry principal components (PCs), smoking status, pack-years, and field center. We identified nine SNPs in strong linkage disequilibrium in the CYP2U1 gene to be associated with FEV1 and a novel SNP (rs889574) associated with FEV1/FVC, none of which were replicated in the CHARGE/SpiroMeta consortia. Using linkage analysis, we identified a novel linkage peak in chromosome 2 at 219 cM for FEV1/FVC (LOD: 3.29) and confirmed a previously reported linkage peak in chromosome 6 at 28 cM (LOD: 3.33) for FEV1. Future studies need to identify the rare genetic variants underlying the linkage peak in chromosome 6 for FEV1.
    Respiratory Research 01/2014; 15(1):134. DOI:10.1186/s12931-014-0134-x · 3.13 Impact Factor

Full-text (2 Sources)

Download
79 Downloads
Available from
May 19, 2014