Larval midgut destruction in Drosophila: not dependent on caspases but suppressed by the loss of autophagy.

Department of Haematology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia.
Autophagy (Impact Factor: 11.42). 01/2010; 6(1):163-5. DOI: 10.4161/auto.6.1.10601
Source: PubMed

ABSTRACT While most programmed cell death (PCD) in animal development is reliant upon the caspase-dependent apoptotic pathway and subsequent cleavage of caspase substrates, we found that PCD in Drosophila larval midgut occurs normally in the absence of the main components of the apoptotic machinery. However, when some of the components of the autophagic machinery were disrupted, midgut destruction was severely delayed. These studies demonstrate that Drosophila midgut PCD is executed by a novel mechanism where caspases are apparently dispensable, but that requires autophagy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Programmed cell death (PCD) is a focal topic for understanding processes underlying metamorphosis in insects, especially so in holometabolous orders. During adult morphogenesis it allows for the elimination of larva-specific tissues and the reorganization of others for their functionalities in adult life. In Rhynchosciara, this PCD process could be classified as autophagic cell death, yet the expression of apoptosis-related genes and certain morphological aspects suggest that processes, autophagy and apoptosis may be involved. Aiming to reveal the morphological changes that salivary gland and fat body cells undergo during metamorphosis we conducted microscopy analyses to detect chromatin condensation and fragmentation, as well as alterations in the cytoplasm of late pupal tissues of Rhynchosciara americana. Transmission electron microscopy and confocal microscopy revealed cells in variable stages of death. By analyzing the morphological structure of the salivary gland we observed the presence of cells with autophagic vacuoles and apoptotic bodies and DNA fragmentation was confirmed with the TUNEL assay in salivary gland. The reorganization of fat body occurs with discrete detection of cell death by TUNEL assay. However, both: salivary gland histolysis and fat body reorganization occur under control of hormone ecdysone.
    Arthropod Structure & Development 09/2014; 43(5). DOI:10.1016/j.asd.2014.05.001 · 1.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as /`accidental cell death/' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. /`Regulated cell death/' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects i
    Cell death and differentiation 09/2014; DOI:10.1038/cdd.2014.137 · 8.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is an evolutionarily conserved catabolic process by which cells degrade their own components through the lysosomal machinery. In physiological conditions, the mechanism is tightly regulated and contributes to maintain a balance between synthesis and degradation in cells undergoing intense metabolic activities. Autophagy is associated with major tissue remodeling processes occurring through the embryonic, fetal and early postnatal periods of vertebrates. Here we survey current information implicating autophagy in cellular death, proliferation or differentiation in developing vertebrates. In developing systems, activation of the autophagic machinery could promote different outcomes depending on the cellular context. Autophagy is thus an extraordinary tool for the developing organs and tissues.
    12/2012; 1(3):428-48. DOI:10.3390/cells1030428

Full-text (2 Sources)

Available from
May 27, 2014