SoyBase, the USDA-ARS soybean genetics and genomics database

USDA-ARS-CICGRU, Department of Agronomy, Iowa State University, Ames, IA 50011, USA.
Nucleic Acids Research (Impact Factor: 8.81). 12/2009; 38(Database issue):D843-6. DOI: 10.1093/nar/gkp798
Source: PubMed

ABSTRACT SoyBase, the USDA-ARS soybean genetic database, is a comprehensive repository for professionally curated genetics, genomics and related data resources for soybean. SoyBase contains the most current genetic, physical and genomic sequence maps integrated with qualitative and quantitative traits. The quantitative trait loci (QTL) represent more than 18 years of QTL mapping of more than 90 unique traits. SoyBase also contains the well-annotated 'Williams 82' genomic sequence and associated data mining tools. The genetic and sequence views of the soybean chromosomes and the extensive data on traits and phenotypes are extensively interlinked. This allows entry to the database using almost any kind of available information, such as genetic map symbols, soybean gene names or phenotypic traits. SoyBase is the repository for controlled vocabularies for soybean growth, development and trait terms, which are also linked to the more general plant ontologies. SoyBase can be accessed at

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cultivated soybean (Glycine max L.) cv. Dunbar (PI 552538) and wild G. soja (PI 326582A) exhibited significant differences in root architecture and root-related traits. In this study, phenotypic variability for root traits among 251 BC2F5 backcross inbred lines (BILs) developed from the cross Dunbar/PI 326582A were identified. The root systems of the parents and BILs were evaluated in controlled environmental conditions using a cone system at seedling stage. The G. max parent Dunbar contributed phenotypically favorable alleles at a major quantitative trait locus on chromosome 8 (Satt315-I locus) that governed root traits (tap root length and lateral root number) and shoot length. This QTL accounted for >10% of the phenotypic variation of both tap root and shoot length. This QTL region was found to control various shoot- and root-related traits across soybean genetic backgrounds. Within the confidence interval of this region, eleven transcription factors (TFs) were identified. Based on RNA sequencing and Affymetrix expression data, key TFs including MYB, AP2-EREBP and bZIP TFs were identified in this QTL interval with high expression in roots and nodules. The backcross inbred lines with different parental allelic combination showed different expression pattern for six transcription factors selected based on their expression pattern in root tissues. It appears that the marker interval Satt315–I locus on chromosome 8 contain an essential QTL contributing to early root and shoot growth in soybean.
    PLoS ONE 03/2015; 10(3):e0120490. DOI:10.1371/journal.pone.0120490 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Next Generation Sequencing technologies (NGS) unexpectedly pushed forward the capability of solving genome organization and of widely depicting gene expression. However, although the flourishing of tools to process the NGS data, versatile and user-friendly computational environments for integrative and comparative analyses of the results from the increasing amount of collections are still required. The gene expression of tomato tissues has been widely investigated in the years, thanks to both EST sequencing and different microarray platforms. However, the resulting collections are heterogeneous in terms of experimental approaches, genotypes and conditions, making the data far from representing a gene expression atlas for the species. Therefore, the recent release of NGS transcriptome collections from several tissues and stages from physiological conditions for specific tomato genotypes provides a relevant resource to be appropriately exploited to address key questions on gene expression patterns, such as those related to fruit ripening and development in tomato. The organization of the results from the processed collections in web accessible environments, enriched with tools for their exploration, may represent a precious opportunity for the scientific research in tomato and a reference example for similar efforts. Here we present the architecture and the facilities of NexGenEx-, a web based platform that offers processed NGS transcriptome collections and enables immediate analyses of the results. The platform allows gene expression investigations, profiling and comparisons, and exploits different resources. Specifically, we present here the platform partition NexGenEx-Tom, dedicated to the organization of results from tomato NGS based transcriptomes. In the current version, NexGenEx-Tom includes processed and normalized NGS expression data from three collections covering several tissue/stages from different genotypes. Beyond providing a user-friendly interface, the platform was designed with the aim to easily be expanded to include other NGS based transcriptome collections. It can also integrate different genome releases, possibly from different cultivars or genotypes, but even from different species. The platform is proposed as an example effort in tomato, and is described as a profitable approach for the exploitation of these challenging and precious datasets.
    BMC Plant Biology 12/2015; 15(1):412. DOI:10.1186/s12870-014-0412-2 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Root system architecture is important for water acquisition and nutrient acquisition for all crops. In soybean breeding programs, wild soybean alleles have been used successfully to enhance yield and seed composition traits, but have never been investigated to improve root system architecture. Therefore, in this study, high-density single-feature polymorphic markers and simple sequence repeats were used to map quantitative trait loci (QTLs) governing root system architecture in an inter-specific soybean mapping population developed from a cross between Glycine max and Glycine soja. Wild and cultivated soybean both contributed alleles towards significant additive large effect QTLs on chromosome 6 and 7 for a longer total root length and root distribution, respectively. Epistatic effect QTLs were also identified for taproot length, average diameter, and root distribution. These root traits will influence the water and nutrient uptake in soybean. Two cell division-related genes (D type cyclin and auxin efflux carrier protein) with insertion/deletion variations might contribute to the shorter root phenotypes observed in G. soja compared with cultivated soybean. Based on the location of the QTLs and sequence information from a second G. soja accession, three genes (slow anion channel associated 1 like, Auxin responsive NEDD8-activating complex and peroxidase), each with a non-synonymous single nucleotide polymorphism mutation were identified, which may also contribute to changes in root architecture in the cultivated soybean. In addition, Apoptosis inhibitor 5-like on chromosome 7 and slow anion channel associated 1-like on chromosome 15 had epistatic interactions for taproot length QTLs in soybean. Rare alleles from a G. soja accession are expected to enhance our understanding of the genetic components involved in root architecture traits, and could be combined to improve root system and drought adaptation in soybean.
    BMC Genomics 02/2015; 16:132. DOI:10.1186/s12864-015-1334-6 · 4.04 Impact Factor

Full-text (3 Sources)

Available from
Jun 6, 2014