Article

Up-regulation of histamine H4 receptors contributes to splenic apoptosis in septic mice: counteraction of the antiapoptotic action of nuclear factor-kappaB.

Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.89). 12/2009; 332(3):730-7. DOI: 10.1124/jpet.109.163543
Source: PubMed

ABSTRACT The histamine H(4) receptor is the most recently identified receptor and is considered to play a role in a variety of inflammatory diseases. Histamine levels in the plasma are known to be elevated in animal models of sepsis and in septic patients. The aim of this study was to test the hypothesis that the H(4) receptor may play a significant role in the pathophysiology of sepsis. Polymicrobial sepsis was induced by cecal ligation and puncture in BALB/c mice. Although the H(4) receptor gene was undetectable in normal peripheral key organs, with the exception of the spleen, the expression levels of this gene were highly up-regulated in all those organs of septic mice. In vivo transfection of nuclear factor-kappaB (NF-kappaB) decoy oligodeoxynucleotide, but not of its scrambled form, resulted in a great inhibition of sepsis-induced overexpression of the H(4) receptor gene. In septic mice, marked increases in caspase-3 activation and follicular lymphocyte apoptosis in spleens were strongly suppressed by systemic treatment with synthetic small interfering RNA (siRNA) targeted to the H(4) receptor. This was associated with the up-regulation of a number of antiapoptotic proteins. These antiapoptotic effects of H(4) receptor siRNA treatment were all inhibited by further application of NF-kappaB decoy oligonucleotide. Our results suggest that superinduction of the histamine H(4) receptor gene in peripheral key organs, including the spleen, that is promoted by sepsis is transcriptionally controlled by NF-kappaB, whereas stimulation of this receptor is involved in the development of sepsis-induced splenic apoptosis through counteraction of the antiapoptotic action of NF-kappaB.

0 Bookmarks
 · 
87 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sepsis with subsequent multiple organ dysfunction is a pronounced systemic inflammatory response to concealed or known infection and is a leading cause of death in intensive care units. The survival rate of severe sepsis and septic shock has not markedly improved in recent decades despite a great number of receptors and molecules involved in its pathogenesis have been found and taken as therapeutic targets. It is essential to thoroughly understand the host cell-mediated immunity involved in the development of sepsis and sepsis-related organ injury. Recent studies indicate that innate immune cells (such as neutrophils, macrophages, dendritic cells, T lymphocytes, regulatory T cells, and natural killer T cells) play pivotal roles in the maintenance of peripheral homeostasis and regulation of immune responses during sepsis. Therefore, an understanding of the biological significance and pathophysiological roles of different cell populations might gain novel insights into the immunoregulatory mechanisms of sepsis. In this review, we focus on major immune cells that may play potential roles in the contribution of new therapeutic approaches for sepsis.
    Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research 09/2013; · 1.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sepsis with subsequent multiple-organ dysfunction is a distinct systemic inflammatory response to concealed or obvious infection, and it is a leading cause of death in intensive care units. Thus, one of the key goals in critical care medicine is to develop novel therapeutic strategies that will affect favorably on outcome of septic patients. In addition to systemic response to infection, apoptosis is implicated to be an important mechanism of the death of immune cells, including neutrophils, macrophages, T lymphocytes, and dendritic cells, and it is usually followed by the development of multiple-organ failure in sepsis. The implication of apoptosis of immune cells is now highlighted by multiple studies that demonstrate that prevention of cell apoptosis can improve survival in relevant animal models of severe sepsis. In this review, we focus on major apoptotic death pathways and molecular mechanisms that regulate apoptosis of different immune cells, and advances in these areas that may be translated into more promising therapies for the prevention and treatment of severe sepsis.
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Olprinone, a specific phosphodiesterase III inhibitor, and corforsin daropate, a direct adenylate cyclase activator, are now being used in critical conditions. We investigated whether their therapeutic use provides protection against septic acute lung injury (ALI) and mortality. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in BALB/c mice. Olprinone or colforsin daropate was continuously given through an osmotic pump that was implanted into the peritoneal cavity immediately following CLP. These treatments prevented the ALI development in CLP mice, as indicated by the findings that severe hypoxemia, increased pulmonary vascular permeability, and histological lung damage were strikingly remedied. Furthermore, continued administration of olprinone or colforsin daropate suppressed apoptosis induction in septic lungs and improved the survival of CLP mice. Olprinone and corforsin daropate enhanced Akt phosphorylation in septic lungs. Wortmannin, which inhibits the Akt upstream regulator phosphatidylinositol 3-kinase, abrogated the protective effects of olprinone and corforsin daropate on sepsis-associated lung inflammation and apoptosis. In vivo transfection of cyclic AMP response element binding protein (CREB) decoy oligodeoxynucleotide failed to negate the abilities of these agents to increase Akt phosphorylation and to inhibit IκBα degradation in septic lungs. These results demonstrate for the first time that CREB-independent Akt-mediated signaling is a critical mechanism contributing to the therapeutic effects of olprinone and corforsin daropate on septic ALI. Moreover, our data also suggest that these cyclic AMP-related agents, by blocking both nuclear factor-κB activation and apoptosis induction, may represent an effective therapeutic approach to the treatment of the septic syndrome.
    AJP Lung Cellular and Molecular Physiology 05/2012; 303(2):L130-40. · 3.52 Impact Factor