Up-Regulation of Histamine H-4 Receptors Contributes to Splenic Apoptosis in Septic Mice: Counteraction of the Antiapoptotic Action of Nuclear Factor-kappa B

Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.86). 12/2009; 332(3):730-7. DOI: 10.1124/jpet.109.163543
Source: PubMed

ABSTRACT The histamine H(4) receptor is the most recently identified receptor and is considered to play a role in a variety of inflammatory diseases. Histamine levels in the plasma are known to be elevated in animal models of sepsis and in septic patients. The aim of this study was to test the hypothesis that the H(4) receptor may play a significant role in the pathophysiology of sepsis. Polymicrobial sepsis was induced by cecal ligation and puncture in BALB/c mice. Although the H(4) receptor gene was undetectable in normal peripheral key organs, with the exception of the spleen, the expression levels of this gene were highly up-regulated in all those organs of septic mice. In vivo transfection of nuclear factor-kappaB (NF-kappaB) decoy oligodeoxynucleotide, but not of its scrambled form, resulted in a great inhibition of sepsis-induced overexpression of the H(4) receptor gene. In septic mice, marked increases in caspase-3 activation and follicular lymphocyte apoptosis in spleens were strongly suppressed by systemic treatment with synthetic small interfering RNA (siRNA) targeted to the H(4) receptor. This was associated with the up-regulation of a number of antiapoptotic proteins. These antiapoptotic effects of H(4) receptor siRNA treatment were all inhibited by further application of NF-kappaB decoy oligonucleotide. Our results suggest that superinduction of the histamine H(4) receptor gene in peripheral key organs, including the spleen, that is promoted by sepsis is transcriptionally controlled by NF-kappaB, whereas stimulation of this receptor is involved in the development of sepsis-induced splenic apoptosis through counteraction of the antiapoptotic action of NF-kappaB.

  • Source
    Targets in Gene Therapy, 08/2011; , ISBN: 978-953-307-540-2
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Earlier studies have reported the production of histamine in colorectal cancers (CRCs). The effect of histamine is largely determined locally by the histamine receptor expression pattern. Recent evidence suggests that the expression level of histamine receptor H4 (HRH4) is abnormal in colorectal cancer tissues. However, the role of HRH4 in CRC progression and its clinical relevance is not well understood. The aim of this study is to evaluate the clinical and molecular phenotypes of colorectal tumors with abnormal HRH4 expression. Immunoblotting, real-time PCR, immunofluorescence and immunohistochemistry assays were adopted to examine HRH4 expression in case-matched CRC samples (n = 107) and adjacent normal tissues (ANTs). To assess the functions of HRH4 in CRC cells, we established stable HRH4-transfected colorectal cells and examined cell proliferation, colony formation, cell cycle and apoptosis in these cells. The protein levels of HRH4 were reduced in most of the human CRC samples regardless of grade or Dukes classification. mRNA levels of HRH4 were also reduced in both early-stage and advanced CRC samples. In vitro studies showed that HRH4 over-expression caused growth arrest and induced expression of cell cycle proteins in CRC cells upon exposure to histamine through a cAMP -dependent pathway. Furthermore, HRH4 stimulation promoted the 5-Fu-induced cell apoptosis in HRH4-positive colorectal cells. The results from the current study supported previous findings of HRH4 abnormalities in CRCs. Expression levels of HRH4 could influence the histamine-mediated growth regulation in CRC cells. These findings suggested a potential role of abnormal HRH4 expression in the progression of CRCs and provided some new clues for the application of HRH4-specific agonist or antagonist in the molecular therapy of CRCs.
    BMC Cancer 05/2011; 11:195:1-11. DOI:10.1186/1471-2407-11-195 · 3.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: INTRODUCTION: Several studies underlined the critical role of histamine H4 receptor (H4R) in inflammation, thus H4 modulators have been suggested as promising drug candidates in inflammatory diseases. First H4 ligands typically have indole or amino-pyrimidine scaffolds. During the last few years, however, serious efforts have been made to identify novel H4 chemotypes with improved pharmacodynamic and pharmacokinetic properties. AREAS COVERED: Areas covered in this review include an overview on H4 ligands published in scientific papers, as well as in patent applications between 2009 and 2011. Recently discovered scaffolds possessing significant H4 activity were analyzed and their therapeutic potential was reviewed. EXPERT OPINION: Recent results from the scientific literature and novel patent applications reinforce the major role of H4R in inflammatory diseases such as pruritus, asthma, inflammatory pain and allergic rhinitis. Novel studies suggest further indications of H4 modulators in cancer, neuropathic pain, vestibular disorders and type 2 diabetes. The number of active H4 chemotypes was increased significantly. The first H4 antagonist entered to clinics and the results from a proof-of-concept Phase II clinical study is expected to be disclosed soon.
    Expert Opinion on Therapeutic Patents 03/2012; 22(3):205-21. DOI:10.1517/13543776.2012.665447 · 3.44 Impact Factor