Modulation of epithelial sodium channel activity by lipopolysaccharide in alveolar type II cells: involvement of purinergic signaling.

Département de Médecine, Centre de Recherche, Centre Hospitalier de l'Université de Montréal-Hôtel-Dieu, 3840 St. Urbain, Montréal, PQ, Canada.
AJP Lung Cellular and Molecular Physiology (Impact Factor: 3.52). 12/2009; 298(3):L417-26. DOI: 10.1152/ajplung.00170.2009
Source: PubMed

ABSTRACT Pseudomonas aeruginosa is a gram-negative bacterium that causes chronic infection in cystic fibrosis patients. We reported recently that P. aeruginosa modulates epithelial Na(+) channel (ENaC) expression in experimental chronic pneumonia models. For this reason, we tested whether LPS from P. aeruginosa alters ENaC expression and activity in alveolar epithelial cells. We found that LPS induces a approximately 60% decrease of ENaC apical current without significant changes in intracellular ENaC or surface protein expression. Because a growing body of evidence reports a key role for extracellular nucleotides in regulation of ion channels, we evaluated the possibility that modulation of ENaC activity by LPS involves extracellular ATP signaling. We found that alveolar epithelial cells release ATP upon LPS stimulation and that pretreatment with suramin, a P2Y(2) purinergic receptor antagonist, inhibited the effect of LPS on ENaC. Furthermore, ET-18-OCH3, a PLC inhibitor, and Go-6976, a PKC inhibitor, were able to partially prevent ENaC inhibition by LPS, suggesting that the actions of LPS on ENaC current were mediated, in part, by the PKC and PLC pathways. Together, these findings demonstrate an important role of extracellular ATP signaling in the response of epithelial cells to LPS.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Active sodium transport mediated by epithelial Na(+) channel (ENaC) is vital for fetal lung fluid reabsorption at birth and pulmonary edema resolution. Previously, we demonstrated that αENaC expression and activity are downregulated in alveolar epithelial cells by cycloheximide (Chx) and Pseudomonas aeruginosa. The regulatory mechanisms of αENaC mRNA expression by Chx and lipopolysaccharide (LPS) from P. aeruginosa were further studied in the present work. Both agents decreased αENaC mRNA expression to 50% of control values after 4 h. Chx repressed αENaC expression in a dose-dependent manner independently of protein synthesis. Although extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) pathways were activated by the two treatments, their mechanisms of ENaC mRNA modulation were different. First, activation of the signalling pathways was sustained by Chx but only transiently by LPS. Second, ERK1/2 or p38 MAPK inhibition attenuated the effects of Chx on αENaC mRNA, whereas suppression of both signalling pathways was necessary to alleviate the outcome of LPS on αENaC mRNA. The molecular mechanisms involved in the decrease of αENaC expression were investigated in both conditions. LPS, but not Chx, significantly reduced αENaC promoter activity via the ERK1/2 and p38 MAPK pathways. These results suggest that LPS attenuates αENaC mRNA expression via diminution of transcription, whereas Chx could trigger some post-transcriptional mechanisms. Although LPS and Chx downregulate αENaC mRNA expression similarly and with similar signalling pathways, the mechanisms modulating ENaC expression are different depending on the nature of the cellular stress.
    AJP Lung Cellular and Molecular Physiology 09/2013; · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alveolar epithelial cells are involved in Na(+) absorption via the epithelial Na(+) channel (ENaC), an important process for maintaining an appropriate volume of liquid lining the respiratory epithelium and for lung oedema clearance. Here, we investigated how a 20% hypotonic shock modulates the ionic current in these cells. Polarized alveolar epithelial cells isolated from rat lungs were cultured on permeant filters and their electrophysiological properties recorded. A 20% bilateral hypotonic shock induced an immediate, but transient 52% rise in total transepithelial current and a 67% increase in the amiloride-sensitive current mediated by ENaC. Amiloride pre-treatment decreased the current rise after hypotonic shock, showing that ENaC current is involved in this response. Since Cl(-) transport is modulated by hypotonic shock, its contribution to the basal and hypotonic-induced transepithelial current was also assessed. Apical NPPB, a broad Cl(-) channel inhibitor and basolateral DIOA a potassium chloride co-transporter (KCC) inhibitor reduced the total and ENaC currents, showing that transcellular Cl(-) transport plays a major role in that process. During hypotonic shock, a basolateral Cl(-) influx, partly inhibited by NPPB is essential for the hypotonic-induced current rise. Hypotonic shock promoted apical ATP secretion and increased intracellular Ca(2+). While apyrase, an ATP scavenger, did not inhibit the hypotonic shock current response, W7 a calmodulin antagonist completely prevented the hypotonic current rise. These results indicate that a basolateral Cl(-) influx as well as Ca(2+)/calmodulin, but not ATP, are involved in the acute transepithelial current rise elicited by hypotonic shock.
    PLoS ONE 09/2013; 8(9):e74565. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nitric oxide (NO) plays an important role in innate host defence and inflammation. In response to infection, NO is generated by inducible nitric oxide synthase (iNOS), a gene product whose expression is highly modulated by different stimuli, including lipopolysaccharide (LPS) from gram-negative bacteria. We reported recently that LPS from Pseudomonas aeruginosa altered Na(+) transport in alveolar epithelial cells via a suramin-dependent process, indicating that LPS activated a purinergic response in these cells. To further study this question, in the present work, we tested if iNOS mRNA and protein expression were modulated in response to LPS in alveolar epithelial cells. We found that LPS induced a 12-fold increase in iNOS mRNA expression via a transcription-dependent process in these cells. iNOS protein, NO and nitrotyrosine were also significantly elevated in LPS-treated cells. Ca(++) chelation and protein kinase C (PKCα-β1) inhibition suppressed iNOS mRNA induction by LPS, implicating Ca2(+)-dependent PKC signalling in this process. LPS evoked a significant increase of extracellular ATP. Because PKC activation is one of the signalling pathways known to mediate purinergic signalling, we evaluated the hypothesis that iNOS induction was ATP-dependent. Although high suramin concentration inhibited iNOS mRNA induction, the process was not ATP-dependent, since specific purinergic receptor antagonists could not inhibit the process. Altogether, these findings demonstrate that iNOS expression is highly modulated in alveolar epithelial cells by LPS via a Ca(++)/PKCα-β1 pathway independent of ATP signalling.
    AJP Lung Cellular and Molecular Physiology 05/2013; · 3.52 Impact Factor