Variable Field Proton-Electron Double-Resonance Imaging: Application to pH mapping of aqueous samples

Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, The Ohio State University, College of Medicine, 420 West 12th Ave., Room 611B, Columbus, OH 43210, USA.
Journal of Magnetic Resonance (Impact Factor: 2.51). 11/2009; 202(2):267-73. DOI: 10.1016/j.jmr.2009.11.017
Source: PubMed

ABSTRACT A new concept of Variable Field Proton-Electron Double-Resonance Imaging (VF PEDRI) is proposed. This allows for functional mapping using specifically designed paramagnetic probes (e.g. oxygen or pH mapping) with MRI high quality spatial resolution and short acquisition time. Studies performed at 200 G field MRI with phantoms show that a pH map of the sample can be extracted using only two PEDRI images acquired in 140 s at pre-selected EPR excitation fields providing pH resolution of 0.1 pH units and a spatial resolution of 1.25mm. Note that while concept of functional VF PEDRI was demonstrated using the pH probe, it can be applied for studies of other biologically relevant parameters of the medium such as redox state, concentrations of oxygen or glutathione using specifically designed EPR probes.

Download full-text


Available from: George Caia, Sep 26, 2015
18 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dynamic nuclear polarization (DNP) is an NMR-based technique which enables detection and spectral characterization of endogenous and exogenous paramagnetic substances measured via transfer of polarization from the saturated unpaired electron spin system to the NMR active nuclei. A variable field system capable of performing DNP spectroscopy with NMR detection at any magnetic field in the range 0-0.38 T is described. The system is built around a clinical open-MRI system. To obtain EPR spectra via DNP, partial cancellation of the detection field B(0)(NMR) is required to alter the evolution field B(0)(EPR) at which the EPR excitation is achieved. The addition of resistive actively shielded field cancellation coils in the gap of the primary magnet provides this field offset in the range of 0-100 mT. A description of the primary magnet, cancellation coils, power supplies, interfacing hardware, RF electronics and console are included. Performance of the instrument has been evaluated by acquiring DNP spectra of phantoms with aqueous nitroxide solutions (TEMPOL) at three NMR detection fields of 97 G, 200 G and 587 G corresponding to 413 kHz, 851.6 kHz and 2.5 MHz respectively and fixed EPR evolution field of 100 G corresponding to an irradiation frequency of 282.3 MHz. This variable-field DNP system offers great flexibility for the performance of DNP spectroscopy with independent optimum choice of EPR excitation and NMR detection fields.
    Journal of Magnetic Resonance 08/2010; 205(2):202-8. DOI:10.1016/j.jmr.2010.04.015 · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Solution-state dynamic nuclear polarization (DNP) is an increasingly popular method of enhancing nuclear spin polarization that has many applications in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). The theory, methods and applications of DNP in the solution state using the Overhauser effect are distinctly different from those of solid-state DNP or what is known as dissolution DNP. This review discusses the theory and recent experimental advances of Overhauser DNP techniques in the solution state at various field strengths ranging from the earth's magnetic field to 9.2T, covering the literature from 1986 to late 2010. Most of the focus in this review is on spectroscopy applications of DNP, although proton–electron double resonance imaging (PEDRI) and remotely enhanced liquids for imaging contrast (RELIC) applications are briefly covered.
    Annual Reports on NMR Spectroscopy 01/2011; 73:83-126. DOI:10.1016/B978-0-08-097074-5.00003-7 · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proton-electron double-resonance imaging (PEDRI) offers rapid image data collection and high resolution for spatial distribution of paramagnetic probes. Recently we developed the concept of variable field (VF) PEDRI which enables extracting a functional map from a limited number of images acquired at pre-selected EPR excitation fields using specific paramagnetic probes (Khramtsov et al., J. Magn. Reson. 202 (2010) 267-273). In this work, we propose and evaluate a new modality of PEDRI-based functional imaging with enhanced temporal resolution which we term variable radio frequency (VRF) PEDRI. The approach allows for functional mapping (e.g., pH mapping) using specifically designed paramagnetic probes with high quality spatial resolution and short acquisition times. This approach uses a stationary magnetic field but different EPR RFs. The ratio of Overhauser enhancements measured at each pixel at two different excitation frequencies corresponding to the resonances of protonated and deprotonated forms of a pH-sensitive nitroxide is converted to a pH map using a corresponding calibration curve. Elimination of field cycling decreased the acquisition time by exclusion periods of ramping and stabilization of the magnetic field. Improved magnetic field homogeneity and stability allowed for the fast MRI acquisition modalities such as fast spin echo. In total, about 30-fold decrease in EPR irradiation time was achieved for VRF PEDRI (2.4s) compared with VF PEDRI (70s). This is particularly important for in vivo applications enabling one to overcome the limiting stability of paramagnetic probes and sample overheating by reducing RF power deposition.
    Journal of Magnetic Resonance 04/2011; 209(2):227-32. DOI:10.1016/j.jmr.2011.01.011 · 2.51 Impact Factor
Show more